KAKATIYA UNIVERSITY, WARANGAL

Department of Statistics

CBCS pattern with Semester System (wef: 2016-17) B.Sc (STATISTICS) PRACTICAL EXAMINATION PATTERN

I Year, Semester-II: Practical-2

Probability Distributions

			Marl	ks divisi	on		
Method of Solving	No. of Problems given	Student has to attempt	Problem solving	Viva	Record	Total Marks	Duration of Exam
Using Calculator	4	2	2x10=20				
Using Computer (MS-Excel)	2	1	1x10=10	10	10	50	2+1=3 hrs

Drugad

Chairperson Board of Studies in Statistics Kakatiya University Warangal - 506 009

KAKATIYA UNIVERSITY, WARANGAL

Department of Statistics

CBCS pattern with Semester System (wef: 2016-17) B. Sc (Statistics) I Year, Semester-II <u>Probability Distributions</u> (Question Bank for Practical Examinations)

Note: 1) ONE problem each is to be given from sections A, B, C, D. Student has to attempt any TWO problems using calculator.

TWO problems are to be given from section-E.
Student has to attempt any ONE problem using MS-Excel.

<u>SECTION – A</u>

1. Fit a Binomial distribution for the following data using the direct method. And calculate expected frequencies.

X:	0	1	2	3	4	5	6	7
f:	0	4	13	28	42	20	6	2

2. Fit a Binomial distribution for the data given below, using recurrence method. Also calculate expected frequencies.

X:	0	1	2	3	4	5	6	7	8
f:	5	3	9	19	11	12	3	5	2

3. Seven coins are tossed and number of heads noted. The experiment is repeated 205 times and the following data is obtained.

No. of heads	0	1	2	3	4	5	6	7	8
Frequency	6	11	29	34	52	41	22	9	1

Using the direct method, fit a Binomial distribution when (a) coin is unbiased (b) nature of the coin is not known.

4. The following data due to Weldon shows the results of throwing 12 fair dice 4096 times; a throw of 4, 5 or 6 being called success. Fit a binomial distribution and find expected frequencies.

Success	0	1	2	3	4	5	6	7	8	9	10	11	12
Frequency		7	60	198	430	731	948	847	536	257	71	11	

Chairperson Chairperson Board of Studies in Statistes Kakatiya University Warangal - 506 009 5. The number of male and female births in 800 families in a village having four children are as follows:

No. of male births:	0	1	2	3	4
No. of female births:	4	3	2	1	0
No. of families:	32	178	290	236	64

Fit a Binomial distribution (a) assuming male and female births are equally probable (b) estimating the probabilities from the above data.

6. Fit a Poisson distribution using the direct method to the following data. Find expected frequencies.

X:	0	1	2	3	4	5
f:	142	156	69	27	5	1

7. In 1000 consecutive issues of the 'utopian seven daily chronicle' the deaths of centenarians were recorded, the number 'X' having the frequency 'f' are given in the table. Fit a Poisson distribution by direct method.

X:	0	1	2	3	4	5	6	7	8
f:	229	325	257	119	50	17	2	1	0

8. The numbers of the phone calls received at on exchange in 245 successive one minute intervals are given in the following frequency distribution. Fit a Poisson distribution by recurrence method.

Number of calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

9. Fit a Poisson distribution by recurrence method to the following data which gives the number of dodders in a sample of clover seeds.

No. of dodders (X):	0	1	2	3	4	5	6	7	8
Observed frequency(f):	56	156	132	92	37	22	4	0	1

10. Five hundred television sets are inspected as they come off the production line and the number of defects per set is recorded below:

No. of defects	0	1	2	3	4
No. of sets	368	72	52	7	1

Estimate the average number of defects per set and expected frequencies of 0, 1, 2, 2 and 4 defects, assuming Poisson distribution.

> Chairperson Board of Studies in Statist > Kakatiya University Warangal - 506 00\$

SECTION – B

11. Fit a Negative Binominal distribution and calculate the expected frequencies using direct method.

X:	0	1	2	3	4	5
f:	213	128	37	18	3	1

12. The number of failures preceding rth success in an experiment was recorded as:

No. of failures (X):	0	1	2	3	4	5
Frequency (f):	214	125	41	16	3	1

Fit a Negative Binomial distribution using recurrence relation method.

13. The number of accidents among 414 machine operators was investigated for three successive months. The following table gives the distribution of the operators according the number of accidents which happened to the same operators.

X:	0	1	2	3	4	5	6	7	8
f:	296	74	26	8	4	4	1	0	1

Fit a negative Binomial distribution using the direct method.

14. A blood bank collects B-negative blood samples only. The probability of getting B-negative blood is 'P' and it is treated as success. It takes only one bottle of blood from one person and purchases five bottles per day. The failures of 400 days before getting 5th bottle of blood of this kind were recorded as follows.

No. of failures	0	1	2	3	4	5	6	.7
No. of days	131	131	79	37	14	5	- 2	1

Fit a Negative binomial distribution using recurrence method.

15. In a shooting competition the no of failures of 400 candidates before rth success were recorded as follows:

X:	0	1	2	3	4	5
f:	213	127	44	12	3	1

Estimate 'p' and 'r'. Fit a Negative binomial distribution.

16. For the following frequency distribution, Fit a Geometric distribution using direct method.

X:	0	1	2	3	4	5
f:	1	3	9	15	21	26

Chairperson Board of Studies in Statistres Kakatiya University Warangal - 506 009 17. Given the hypothetical distribution:

No. of cells (X):	0	1	2	3	4	5
Frequency (f):	213	128	37	18	3	1

Fit a geometric distribution and calculate the expected frequencies.

18. A constable inspects each car for a drunkard driver. Every morning he starts inspection until he finds a drunkard driver and then he stops inspection. The probability that a car is driven by drunkard driver is 'p' and is treated as success. The distribution of failures before he finds a drunkard drive in 100 days is given below:

No. of failures (X):	0	1	2	3	4	5	6	7	8
No. of days (f):	40	24	15	9	5	3	2	1	1

Fit a Geometric distribution to the given data using recurrence method

19. Fit a Geometric distribution using direct and recurrence methods and compare expected frequencies.

X:	0	1	2	3	4	5	6
f:	460	140	45	25	18	10	2

20. In a rifle shooting camp the numbers of chances taken by each candidate to hit the target first time successfully are recorded as given below.

No.of chances taken:	1	2	3	4	5	6
No.of candidates:	145	68	46	211	11	4

Fit a Geometric distribution.

<u>SECTION – C</u>

21. Fit a normal distribution using Areas method for the following data.

Class	10 - 20	20-30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90
Frequency	5	12	13	42	76	12	3	15

Also obtain the expected normal frequencies.

22. Obtain the equation of the normal curve that may be fitted to the following data:

Class	60 - 65	65 – 70	70 – 75	75 - 80	80 - 85	85 - 90	90 – 95	95 - 100
Frequency	3	21	150	335	326	135	26	4

Also obtain the expected normal frequencies.

Chairperson Board of Studies in Statist Kakatiya University Warangal - 506 009

23. Fit a normal distribution for the following data by ordinates method. Find expected frequency of each class interval.

C.I.	150-160	160-170	170-180	180-190	190-200	200-210	210-220	220-230	230-240
f	9	24	51	66	72	48	21	6	3

24. Fit a normal distribution for the following data by the method of ordinates. Calculate expected frequencies.

C.I.	60 - 62	63 - 65	66 - 68	69 – 71	72 – 74
f	5	18	42	27	8

- 25. For a certain normal distribution, the first moment about 10 is 40 and fourth moment about 50 is 48, find the arithmetic mean (μ) and standard deviation (σ) of the distribution. Also find (a) P (μ-σ < X < μ +σ) (b) P (μ-2σ < X < μ +2σ) (c) P (μ-3σ < X < μ +3σ).
- 26. X is normally distributed with mean 12 and S.D 4. Find (a) $P(X \ge 20)$ (b) $P(X \le 20)$ (c) $P(0 \le X \le 12)$ (d) Find x^1 , when $P(X > x^1) = 0.24$ (e) Find x_0^1 and x_1^1 , when $P(x_0^1 < X < x_1^1) = 0.50$ (f) Find x_{2}^1 , if $P(X > x_{2}^1) = 0.25$.
- 27. The mean yield for one-acre plot is 662 kilos with a s.d. 32 kilos. Assuming normal distribution, how many one-acre plots in a batch of 1,000 plots would you expect to have yield (a) over 700 kilos (b) below 650 kilos, (c) What is the lowest yield of the best 100 plots?
- 28. The local authorities in a certain city install 10,000 electric lamps in the street of the city. If these lamps have an average life of 1,000 burning hours with a standard deviation of 200 hours, assuming normality, what number of lamps might be expected to fail (i) in the first 800 burning hours? (ii) between 800 and 1,200 burning hours? (iii) After what period of burning hours would you expect that (a) 10% of the lamps would fail? (b) 10% of the lamps would be still burning?
- 29. In a distribution exactly normal, 10.03% of the items are under 25 kilogram weight and 89.97% of the items are under 70 kilogram weight. What are the mean and standard deviation of the distribution?

person

Chairperson Board of Studies in Statist-Kakatiya University Warangal - 506 009

Page 6 of 10

30. In an examination it is laid down that a student passes if he secures 30 percent or more marks. He is placed in the first, second or third division according as he secures 60% or more marks, between 45% and 60% marks and marks between 30% and 45% respectively. He gets distinction in case he secures 80% or more marks. It is noticed from the result that 10% of the students failed in the examination, whereas 5% of them obtained distinction. Calculate the percentage of students placed in the second division. (Assume normal distribution of marks).

SECTION – D

31. 200 electrical bulbs tested and the following data is obtained. Fit an exponential distribution and draw graphs for the observed and expected frequencies.

C.I.	0-20	20-40	40 - 60	60 - 80	80 - 100
f	104	56	24	12	4

32. The life time (in hours) of an I.C. of television set of a certain type is tested for 200T.V. sets and recorded in the following frequency distribution.

Life time (in hrs)	0-30	30 - 60	60 - 90	90 - 120	120 - 150	150 - 180	180 - 210	210 - 240
Frequency	108	45	21	9	8	5	4	0

Fit an exponential distribution and find the expected frequencies.

33. The waiting time 'X' (in minutes) at a railway booking counter is exponentially distributed. The following distribution is obtained for 200 passengers.

Waiting time	0-5	5 - 10	10 - 15	15 - 20	20 – 25	25 – 30	30 – 35	35 – 40
No. of passengers	79	48	29	18	11	7	4	4

Fit an exponential distribution.

34. The study of divorced cases in the western countries, the following distribution is obtained for the time interval (in years) between the day of their marriage and day of their divorce.

No. of Years	0-3	3-6	6-9	9-12	12-15	15 and above
No. of persons	190	70	25	10	4	1

Fit an exponential distribution and find the expected frequencies.

Druse

Chairperson Board of Studies in Statistics Kakatiya University Warangal - 506 009 35. A private bus operator runs buses from Warangal to Nizamabad. The bus leaves as soon as 40 passengers have arrived. Assume that the passenger arrivals are independent and are at a mean rate of 'θ'. The following distribution is obtained for 200 buses.

Time (in minutes)	0-10	10-20	20-30	30-40	40-50	50-60	60 & above
No. of buses that have got 40 passengers	90	50	30	15	8	5	2

Fit an exponential distribution.

36. In air force operation, suppose a pilot-less helicopter is flying at 1 K.M. height from the origin. It has a sophisticated machine gun which identifies the enemy crossing the border and fires at him. It can uniformly turn in between $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. It was reported that 200 terrorists were killed at different places along the border as given below. Fit

a Cauchy distribution.

5	- 00	-25	-19	-13	-7	-1	5	11	17	23
Distance	to	to	to	to	to	to	to	to	to	to
	-25	-19	-13	-7	-1	-5	11	17	23	+ ∞
No. of terrorists killed	2	1 .	2	4	41	137	7	2	1	3

37. Fit a Cauchy distribution with location parameter 1.5 and scale parameter 1.

	- ∞	-15	-12	-9	-6	-3	0	3	6	9	12	15
Interval	to	to	to	to	to	to	to	to	to	to	to	to
	-15	-12	-9	-6	-3	0	3	6	9	12	15	00
Frequency	17	1	3	5	15	60	311	59	14	3	2	16

38. Fit a Cauchy distribution for the following data.

	- 00	-29	-21	-13	-5	3	11	19	27	35
Interval	to	to	to	to	to	to	to	to	to	to
	-29	-21	-13	-5	3	11	19	27	35	00
Frequency	12	10	20	38	400	32	20	10	8	0

Chairperson Board of Studies in Statiste Kakatiya University Watangal - 506 009

<u>SECTION – E</u>

Note: All problems are to be solved using MS-Excel

39. Fit a binomial distribution by direct method using MS-EXCEL.

X:	0	1	2	3	4	5	6	7
f:	0	4	13	28	42	20	6	2

40. Fit a binomial distribution by recurrence method using MS-EXCEL.

X:	0	1	2	3	4	5	6
f:	7	64	140	210	132	75	12

41. Fit a Poisson distribution for the following data by direct method using MS-EXCEL.

No. of Deaths	0	1	2	3	4
Frequency	7	64	140	210	132

42. The distribution of typing mistakes committed by a typist is given below. Assuming a Poisson model find out the expected frequencies using MS-EXCEL. (Use recurrence method)

Mistakes per page	0	1	2	3	4	5
No. of Pages	142	156	69	27	5	1

43. Fit a normal distribution to the following data by areas method using MS-EXCEL.

Class	60 - 65	65 - 70	70 – 75	75 – 80	80 - 85	85 - 90	90 - 95	95 - 100
Frequency	3	21	150	335	326	135	26	4

44. Fit a normal distribution to the following data by areas method using MS-EXCEL.

Class	60 - 62	63 - 65	66 - 68	69 – 71	72 - 74
Frequency	5	18	42	27	8

45. Fit a normal distribution for the following data by ordinates method using MS-XCEL.

C.I.	150-160	160-170	170-180	180-190	190-200	200-210	210-220	220-230	230-240
f	9	24	51	66	72	48	21	6	3

Chairperson Board of Studies in Statistics Kakatiya University Warangal - 506 009

46. The I.Q. of 200 children is distributed as given below:

I.Q.Scores	60 - 70	70 - 80	80 - 90	90 - 100	100-110	110-120						
No. of Children	2	9	23	40	50	42						
Fit a Normal distri	Fit a Normal distribution by ordinates method using MS- EXCEL.											

47. The study of divorced cases in the western countries, the following distribution is

obtained for the time interval (in yeas) between the day of their marriages and the day of the divorce. Fit an exponential distribution using MS-EXCEL.

No. of year	0-2	2-4	4 – 6	6 – 8	8-10	10 and Above
No .of Persons	126	48	17	6	2	1

48. The waiting time 'X' (in minutes) at a railway booking counter is exponentially distributed. The following distribution is obtained for 200 passengers.

Waiting time	0-5	5 – 10	10 – 15	15 – 20	20 - 25	25 - 30	30 - 35	35 - 40
No. of passengers	79	48	29	18	11	7	4	4

Fit an exponential distribution using MS-EXCEL.

49. Fit a Cauchy distribution for the following data using MS-EXCEL.

	- ∞	-29	-21	-13	-5	3	11	19	27	35
Interval	to	to	to	to	to	to	to	to	to	to
	-29	-21	-13	-5	3	11	19	27	35	00
Frequency	12	10	20	38	400	32	20	10	8	0

50. Fit a Cauchy distribution with location parameter 1.5 and scale parameter 1 for the following data using MS-EXCEL.

	- 00	-15	-12	-9	-6	-3	0	3	6	9	12	15
Interval	to	to	to	to	to	to	to	to	to	to	to	to
	-15	-12	-9	-6	-3	0	3	6	9	12	15	8
Frequency	17	1	3	5	15	60	311	59	14	3	2	16

Board of Studies in Statistes Kakatiya University Warangal - 506 009