Theory: 4 credits and Practical 1 credit Theory: 4 hours/week and Practicals : 2 hours/ week

Objective: The course is aimed at exposing the students to the foundations of analysis which will be useful in understanding various physical phenomena.

Outcome: After the completion of the course students will be in a position to appreciate beauty and applicability of the course.

Unit- I

Sequences- Limits of sequences- A Discussion about Proofs- Limit Theorems for Sequences – Monotone Sequences and Cauchy Sequences

Unit- II

Subsequences- Lim sup's and Lim inf's Series- Alternating Series and Integrals Tests. Continuity: Continuous functions- Properties of Continuous functions.

Unit - III

Sequence and Series of Functions: Power Series- Uniform Convergence – More on Uniform Convergence- Differentiation and Integration of Power Series (Theorems in this section without Proofs)

Unit - IV

Integration: The Riemann Integral- Properties of Riemann Integral- Fundamental Theorem of Calculus.

Text: Kenneth A Ross, Elementary Analysis- The Theory of Calculus

References:

William F.Trench: Introduction to Real Analysis

Lee Larson: Introduction to Real Analysis

Shanti Narayan and Mittal: Mathematical Analysis

Brian S. Thomson, Judith B. Bruckner, Andrew M. Bruckner: Elementary Real Analysis

Sudhir R. Ghorpade Balmohan V. Limaye: A Course in Calculus and Real Analysis

2.5.1 Practicals Question Bank

Real Analysis

Unit-I

1. For each sequence below, determine whether it converges and, if it converges, give its limit. No proofs are required.

(a) $a_n = \frac{n}{n+1}$

(b) $b_n = \frac{n^2+3}{n^2-3}$

(c) $c_n = 2^{-n}$

(d) $t_n = 1 + \frac{2}{n}$

(e) $x_n = 73 + (-1)^n$

(f) $s_n = (2)^{\frac{1}{n}}$

2. Determine the limits of the following sequences, and then prove your claims.

(a) $a_n = \frac{n}{n^2 + 1}$

(b) $b_n = \frac{7n-19}{3n+7}$

(c) $c_n = \frac{4n+3}{7n-5}$

(d) $d_n = \frac{2n+4}{5n+2}$

(e) $s_n = \frac{1}{n} \sin n$

3. Suppose $\lim a_n = a$, $\lim b_n = b$, and $s_n = \frac{a_n^3 + 4a_n}{b_n^2 + 1}$. Prove $\lim s_n = \frac{a^3 + 4a}{b^2 + 1}$ carefully, using the limit theorems.

4. Let $x_1 = 1$ and $x_{n+1} = 3x_n^2$ for $n \ge 1$.

(a) Show if $a = \lim x_n$, then $a = \frac{1}{3}$ or a = 0.

(b) Does $\lim x_n$ exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

5. Which of the following sequences are increasing? decreasing? bounded?

(a) $\frac{1}{n}$

(b) $\frac{(-1)^n}{n^2}$

(c) n^5

(d) $\sin(\frac{n\pi}{7})$

(e) $(-2)^n$

(f) $\frac{n}{3^n}$

- 6. Let (s_n) be a sequence such that $|s_{n+1} s_n| < 2^{-n}$ for all $n \in \mathbb{N}$. Prove (s_n) is a Cauchy sequence and hence a convergent sequence.
- 7. Let (s_n) be an increasing sequence of positive numbers and define $\sigma_n = \frac{1}{n}(s_1 + s_2 + ... + s_n)$. Prove (σ_n) is an increasing sequence.

19

8. Let $t_1 = 1$ and $t_{n+1} = [1 - \frac{1}{4n^2}].t_n$ for $n \ge 1$.

(a) Show $\lim t_n$ exists.

(b) What do you think $\lim t_n$ is?

- 9. Let $t_1 = 1$ and $t_{n+1} = \left[1 \frac{1}{(n+1)^2}\right] \cdot t_n$ for all $n \ge 1$.
 - (a) Show $\lim t_n$ exists.
 - (b) What do you think $\lim t_n$ is?
 - (c) Use induction to show $t_n = \frac{n+1}{2n}$.
 - (d) Repeat part (b).
- 10. Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - (a) Find s_2 , s_3 and s_4 .
 - (b) Use induction to show $s_n > \frac{1}{2}$ for all n.
 - (c) Show (s_n) is a decreasing sequence.
 - (d) Show $\lim s_n$ exists and find $\lim s_n$.

Unit-II

- 11. Let $a_n = 3 + 2(-1)^n$ for $n \in \mathbb{N}$.
 - (a) List the first eight terms of the sequence (a_n) .
 - (b) Give a subsequence that is constant [takes a single value]. Specify the selection function σ .
- 12. Consider the sequences defined as follows:

$$a_n = (-1)^n$$
, $b_n = \frac{1}{n}$, $c_n = n^2$, $d_n = \frac{6n+4}{7n-3}$.

- (a) For each sequence, give an example of a monotone subsequence.
- (b) For each sequence, give its set of subsequential limits.
- (c) For each sequence, give its lim sup and lim inf.
- (d) Which of the sequences converges? diverges to $+\infty$? diverges to $-\infty$?
- (e) Which of the sequences is bounded?
- 13. Prove $\limsup |s_n| = 0$ if and only if $\lim s_n = 0$.
- 14. Let (s_n) and (t_n) be the following sequences that repeat in cycles of four:

$$(s_n) = (0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, \dots)$$

$$(t_n) = (2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, \dots)$$

Find

(a) $\liminf s_n + \liminf t_n$,

(b) $\liminf (s_n + t_n)$,

(c) $\liminf s_n + \limsup t_n$,

(d) $\limsup(s_n+t_n)$,

(e) $\limsup s_n + \limsup t_n$,

(f) $\liminf (s_n t_n)$,

(g) $\limsup (s_n t_n)$.

15. Determine which of the following series converge. Justify your answers.

(a) $\sum \frac{n^4}{2^n}$

(b) $\sum \frac{2^n}{n!}$

(c) $\sum \frac{n^2}{3^n}$

(d) $\sum \frac{n!}{n^4+3}$

(e) $\sum \frac{\cos^2 n}{n^2}$

(f) $\sum_{n=2}^{\infty} \frac{1}{\log n}$

16. Prove that if $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.

17. Show that if $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges.

Hint: Show $\sqrt{a_n b_n} \le a_n + b_n$ for all n.

18. We have seen that it is often a lot harder to find the value of an infinite sum than to show it exists. Here are some sums that can be handled.

(a) Calculate $\sum_{n=1}^{\infty} (\frac{2}{3})^n$ and $\sum_{n=1}^{\infty} (-\frac{2}{3})^n$.

(b) Prove $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. Hint: Note that $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left[\frac{1}{k} - \frac{1}{k+1}\right]$.

(c) Prove $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \frac{1}{2}$. Hint: Note $\frac{k-1}{2^{k+1}} = \frac{k}{2^k} - \frac{k+1}{2^{k+1}}$.

(d) Use (c) to calculate $\sum_{n=1}^{\infty} \frac{n}{2^n}$.

19. Determine which of the following series converge. Justify your answers.

(a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \log n}$

(b) $\sum_{n=2}^{\infty} \frac{\log n}{n}$

(c) $\sum_{n=4}^{\infty} \frac{1}{n(\log n)(\log \log n)}$

(d) $\sum_{n=2}^{\infty} \frac{\log n}{n^2}$

20. Show $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if and only if p > 1.

UNIT-III

21. For each of the following power series, find the radius of convergence and determine the exact interval of convergence.

(a) $\sum n^2 x^n$

(b) $\sum (\frac{x}{n})^n$

(c) $\sum \left(\frac{2^n}{n^2}\right) x^n$

(d) $\sum \left(\frac{n^3}{3^n}\right) x^n$

(e) $\sum \left(\frac{2^n}{n!}\right) x^n$

(f) $\sum \left(\frac{1}{(n+1)^2 2^n}\right) x^n$

(g) $\sum (\frac{3^n}{n.4^n})x^n$

- (h) $\sum \left(\frac{(-1)^n}{n^2 \cdot 4^n}\right) x^n$
- 22. For n = 0, 1, 2, 3, ...,let $a_n = \left[\frac{4+2(-1)^n}{5}\right]^n$.
 - (a) Find $\limsup (a_n)^{1/n}$, $\liminf (a_n)^{1/n}$, $\limsup \left|\frac{a_{n+1}}{a_n}\right|$ and $\liminf \left|\frac{a_{n+1}}{a_n}\right|$.
 - (b) Do the series $\sum a_n$ and $\sum (-1)^n a_n$ converge? Explain briefly.
- 23. Let $f_n(x) = \frac{1+2\cos^2 nx}{\sqrt{n}}$. Prove carefully that (f_n) converges uniformly to 0 on \mathbb{R} .
- 24. Prove that if $f_n \to f$ uniformly on a set S, and if $g_n \to g$ uniformly on S, then $f_n + g_n \to f + g$ uniformly on S.
- 25. Let $f_n(x) = \frac{x^n}{n}$. Show (f_n) is uniformly convergent on [-1,1] and specify the limit function.
- 26. Let $f_n(x) = \frac{n + \cos x}{2n + \sin^2 x}$ for all real numbers x.
 - (a) Show (f_n) converges uniformly on \mathbb{R} . Hint: First decide what the limit function is; then show (f_n) converges uniformly to it.
 - **(b)** Calculate $\lim_{n\to\infty} \int_2^7 f_n(x) dx$. Hint: Don't integrate f_n .
- 27. Show $\sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$ converges uniformly on \mathbb{R} to a continuous function.
- 28. Show $\sum_{n=1}^{\infty} \frac{x^n}{n^2 2^n}$ has radius of convergence 2 and the series converges uniformly to a continuous function on [-2, 2].
- 29. (a) Show $\sum \frac{x^n}{1+x^n}$ converges for $x \in [0,1)$
 - (b) Show that the series converges uniformly on [0, a] for each a, 0 < a < 1.
- 30. Suppose $\sum_{k=1}^{\infty} g_k$ and $\sum_{k=1}^{\infty} h_k$ converge uniformly on a set S. Show $\sum_{k=1}^{\infty} (g_k + h_k)$ converges uniformly on S.

UNIT-IV

- 31. Let f(x) = x for rational x and f(x) = 0 for irrational x.
 - (a) Calculate the upper and lower Darboux integrals for f on the interval [0, b].
 - **(b)** Is f integrable on [0, b]?
- 32. Let f be a bounded function on [a, b]. Suppose there exist sequences (U_n) and (L_n) of upper and lower Darboux sums for f such that $\lim_{n \to \infty} (U_n L_n) = 0$. Show f is integrable and $\int_a^b f = \lim_{n \to \infty} U_n = \lim_{n \to \infty} L_n$.
- 33. A function f on [a, b] is called a step function if there exists a partition $P = \{a = u_0 < u_1 < \dots < u_m = b\}$ of [a, b] such that f is constant on each interval (u_{j-1}, u_j) , say $f(x) = c_j$ for x in (u_{j-1}, u_j) .
 - (a) Show that a step function f is integrable and evaluate $\int_a^b f$.
 - (b) Evaluate the integral $\int_0^4 P(x)dx$ for the postage-stamp function.
- 34. Show $\left| \int_{-2\pi}^{2\pi} x^2 \sin^8(e^x) dx \right| \le \frac{16\pi^3}{3}$.

- 35. Let f be a bounded function on [a, b], so that there exists B > 0 such that $|f(x)| \leq B$ for all $x \in [a, b]$.
 - (a) Show

$$U(f^2, P) - L(f^2, P) \le 2B[U(f, P) - L(f, P)]$$

for all partitions *P* of [*a*, *b*]. Hint: $f(x)^2 - f(y)^2 = [f(x) + f(y)] \cdot [f(x) - f(y)]$

- (b) Show that if f is integrable on [a, b], then f^2 also is integrable on [a, b].
- 36. Calculate

(a)
$$\lim_{x\to 0} \frac{1}{x} \int_0^x e^{t^2} dt$$

(b)
$$\lim_{h\to 0} \frac{1}{h} \int_3^{3+h} e^{t^2} dt$$
.

37. Show that if f is a continuous real-valued function on [a,b] satisfying $\int_a^b f(x)g(x)dx = 0$ for every continuous function g on [a,b], then f(x) = 0 for all x in [a,b].

Skill Enhancement Course – I - FOR ALL SCIENCE FACULTY B.Sc., II YEAR, III Semester DEPARTMENTS

COMPUTER BASICS AND AUTOMATION

Credits: 2

Theory: 2 hours/week

Marks - 50

Unit -I BASICS OF COMPUTERS

- 1.2 Introduction to computers- Computer parts and Characteristics of computer.
- 1.2.Generations of Computers, Classification of Computers, Basic computer organization.
- 1.3. Applications of Computer. Input and Output Devices- Input Devices, Output Devices.
- 1.4. Soft Copy Devices, Hard Copy Devices. Computer Memory and Processors.

Unit – II OFFICE AUTOMATION

- 1.1.Desktop Word Creation of files and folders, recycle Bin.
- 1.2. Web browser, Office Automation System, need for Office Automation System.
- 1.3. Excel Tables, graphs
- 1.4. PowerPoint, Access to files and folders.

Text Book:

1. Reema Thareja "Fundamentals of Computers" Oxford University Press 2015.

References:

- 1. A. Goel, Computer Fundamentals, Pearson Education, 2010.
- 2. Spoken Tutorial on "Linux (Ubuntu), LibreOffice (Writer, Calc, Impress), Firefox", as E-resource for Learning. http://spoken-tutorial.org