<table>
<thead>
<tr>
<th>FIRST YEAR SEMESTER-I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 104</td>
</tr>
</tbody>
</table>

Paper-I Microbial Diversity of Lower Plants

<table>
<thead>
<tr>
<th>SEMESTER-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 201</td>
</tr>
<tr>
<td>BS 204</td>
</tr>
</tbody>
</table>

Paper-II Bryophytes Pteridophytes, Gymnosperms and Palaeobotany

<table>
<thead>
<tr>
<th>SECOND YEAR SEMESTER-III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 304</td>
</tr>
</tbody>
</table>

Paper-III Taxonomy of Angiosperms and Medicinal Botany

<table>
<thead>
<tr>
<th>SEMESTER-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 404</td>
</tr>
</tbody>
</table>

Plant Anatomy, Embryology and Palynology

<table>
<thead>
<tr>
<th>THIRD YEAR SEMESTER-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 503</td>
</tr>
</tbody>
</table>

Paper-V: Cell Biology and Genetics

| BS 506 | Optional I A/B | DSE-IH | 3T + 2P = 5 | 3 + 1 = 4 |
| Elective-I Ecology and Biodiversity / Elective II: Horticulture |

<table>
<thead>
<tr>
<th>SEMESTER-VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>BS 603</td>
</tr>
</tbody>
</table>

Paper-VIII: Plant Physiology

| BS 606 | Optional A/B | DSE - IF | 3 T + 2 P = 5 | 3 + 1 = 4 |
| Elective III Tissue Culture and Biotechnology / Elective-IV: Seed Technology |

AECC: Ability Enhancement Compulsory Course; **DSC**: Discipline Specific Course; **DSE**: Discipline Specific Elective
UNIT - I
1. Brief account of Archaebacteria, Actinomycetes. (4h)
2. Cyanobacteria: General characters, cell structure, thallus organisation and their significance as biofertilizers with special reference to Oscillatoria, Nostoc and Anabaena. (6h)
3. Lichens: Structure and reproduction; ecological and economic importance. (5h)

UNIT - II
4. Viruses: Structure, replication and transmission; plant diseases caused by viruses and their control with reference to Tobacco Mosaic and Rice Tungro. (7h)
5. Bacteria: Structure, nutrition, reproduction and economic importance. An outline of plant diseases of important crop plants caused by bacteria and their control with reference to Angular leaf spot of cotton and Bacterial blight of Rice. (8h)
6. General account of Mycoplasma with reference to Little leaf of brinjal and Papaya leaf curl (8h)

UNIT-III
7. General characters, structure, reproduction and classification of algae (Fritsch) and thallus organization in algae. (3h)
8. Structure and reproduction of the following:
 - Chlorophyceae: Volvox, Oedogonium and Chara. (5h)
 - Phaeophyceae: Ectocarpus (2h)
 - Rhodophyceae: Polysiphonia (3h)
9. Economic importance of algae in Agriculture and Industry. (2h)

UNIT-IV
10. General characters and classification of fungi (Ainsworth). (3h)
11. Structure and reproduction of the following:
 (a) Mastigimycotina: Albigo (1)
 (b) Zygomyctina: Mucor (1)
 (c) Ascomycotina: Saccharomyces and Penicillium. (2h)
 (d) Basidimycotina: Puccinia (1)
 (e) Deuterimycotina: Cercospora. (9h)
12. Economic importance of fungi in relation to mycorrhizae and mushrooms. General account of mushroom cultivation (2h)
References:

B.Sc (CBCS) Botany-I year
Semester-I - Paper-I
Microbial Diversity of Lower Plants

Theory Model Question Paper

Time: 2 hrs Max. Marks: 40

Draw well-labeled diagrams wherever necessary.

1. Write short notes on any FOUR of the following: - 4 X 2 = 8M
 a. Heterocyst.
 b. Citrus Canker.
 c. Nucule
 d. Cleistothecium.
 e. Mycoplasma
 f. Mucor

II. Essay Questions: 4 X 8 = 32M

1. a. Briefly describe the structure and reproduction of Oscillatoria. (OR)
 b. Describe the cyanophycean cell structure.

2. a. Describe the structure and modes of transmission of plant viruses. (OR)
 b. Write an essay on economic importance of Bacteria.

3. a. Describe the life cycle of Oedogonium with the help of well-labelled diagram . (OR)
 b. Give an account on thallus organization in algae.

4. a. Describe the life cycle of Albugo with the help of well-labelled diagram (OR)
 b. Give a brief account on Mushroom cultivation.
B.Sc (CBCS) Botany-I year
Semester-I - Paper-I
Microbial Diversity of Lower Plants

Practical Syllabus

(45 hours)

1. Study of viruses and bacteria using electron micrographs (photographs). (3h)
2. Gram staining of Bacteria. (3h)
3. Study of symptoms of plant diseases caused by viruses, bacteria, Mycoplasma and fungi:
 Viruses: Tobacco mosaic
 Bacteria: Angular leaf spot of cotton and Rice tungro.
 Mycoplasma: Little leaf of Brinjal and Leaf curl of papaya (3h)
 Fungi: White rust on Crucifers, Rust on wheat & Tikka disease of Groundnut. (6h)
4. Vegetative and reproductive structures of the following taxa:
 Algae: Oscillatoria, Nostoc, Volvox, Oedogonium, Chara, Ectocarpus and Polysiphonia. (6h)
 Fungi: Albugo, Mucor, Saccharomyces, Penicillium, Puccinia and Cercospora (6h)
5. Section cutting of diseased material infected by Fungi and identification of pathogens as per theory syllabus. White rust of Crucifers, Rust on wheat & Tikka disease of Groundnut. (9h)
6. Lichens: Different types of thalli and their external morphology (3 h).
7. Examination of important microbial, fungal and algal products:
 Biofertilizers, protein capsules, antibiotics, mushrooms, Agar-agar etc. (3h)
8. Field visits to places of algal / microbial / fungal interest (e.g. Mushroom cultivation, water bodies). (3h)
B.Sc (CBCS) Botany - I year
Semester-I - Paper-I
Microbial Diversity of Lower Plants

Practical Model Paper

Time : 2 1/2 hrs

Max. Marks: 25

1. Identify the given components ‘A’, ‘B’ & ‘C’ in the algal mixture.
 Describe with neat labeled diagrams & give reasons for the classifications. 3 x 3 = 9M

2. Classify the given bacterial culture ‘D’ using Gram – staining technique. 4M

3. Take a thin transverse section of given diseased material ‘E’.
 Identify & describe the symptoms caused by the pathogen. 5M

4. Identify the given specimens ‘F’, ‘G’ & ‘H’ by giving reasons.
 (Fungal-1, Bacteria-1 & Viral-1) 3 x 1 = 3M

 (Algae-1, Fungi-1) 2 x 1 = 2M

6. Record 2M
U.G. I year Semester-II - (B.Sc/B.A./B.Com) CBCS

Environmental Studies

AECC-2 (2 hrs./week) Credits – 2

(30 hours)

UNIT - I: Ecosystem, Biodiversity & Natural Resources (15 hrs.)

1. Definition, Scope & Importance of Environmental Studies.
2. Structure of Ecosystem – Abiotic & Biotic components Producers, Consumers, Decomposers, Food chains, Food webs, Ecological pyramids)
3. Function of an Ecosystem: Energy flow in the Ecosystem (Single channel energy flow model)
4. Definition of Biodiversity, Genetic, Species & Ecosystem diversity, Hot-spots of Biodiversity, Threats to Biodiversity, Conservation of Biodiversity (In situ & Ex situ)
5. Renewable & Non-renewable resources, Brief account of Forest, Mineral & Energy (Solar Energy & Geothermal Energy) resources

UNIT – II: Environmental Pollution, Global Issues & Legislation (15 hrs.)

1. Causes, Effects & Control measures of Air Pollution, Water Pollution
2. Solid Waste Management
4. Ill-effects of Fire-works
5. Disaster management – floods, earthquakes & cyclones
6. Environmental legislation –:
 (a) Wildlife Protection Act (b) Forest Act (c) Water Act (d) Air Act
7. Human Rights
8. Women and Child welfare
9. Role of Information technology in environment and human health

❖ Field Study: (5 hours)
• Pond Ecosystem
• Forest Ecosystem

REFERENCES:

• Environmental Studies - from crisis to cure – by R. Rajagopalan (Third edition) Oxford University Press.
• Text book of Environmental Studies for undergraduate courses (second edition) by Erach Bharucha
• A text book of Environmental Studies by Dr. D.K. Asthana and Dr. Meera Asthana

471
U.G. I year Semester – II- (B.Sc/B.A./B.Com) CBCS

AECC-2 Environmental Studies Credits – 2

THEORY MODEL PAPER

TIME: 1 1/2 HOURS MAX MARKS: 15

SECTION-A

Answer the following in short: 3x1=3marks
1. Food chains
2. Genetic Diversity
3. III – effects of Fire-works

SECTION-B

Answer the following essays: 2x6=12marks

1 (a) Define Environmental Studies & write an essay on scope & importance of Environmental Studies

OR

(b) Write in detail about Energy resources.

2 (a) Write the Causes, Effects & Control measures of Air Pollution

OR

(b) Describe the role of Information technology in environment and human health
B.Sc (CBCS) Botany - I year
Semester-II - Paper-II
Bryophytes, Pteridophytes, Gymnosperms and Paleobotany

DSC-1B (4 hrs./week)
Theory Syllabus
Credits- 4
(60 hours)

UNIT-I
2. Structure, reproduction, life cycle and systematic position of Marchantia, Anthoceros
 and Polytrichum. (Development stages are not required).
3. Evolution of Sporophyte in Bryophytes.

UNIT-II
4. Pteridophytes: General characters and classification (Sporne’s)
5. Structure, reproduction, life cycle and systematic position of Rhynia, Lycopodium,
 Equisetum and Marsilea.
6. Stelar evolution, heterospory and seed habit in Pteridophytes.

UNIT-III
7. Gymnosperms: General characters, structure, reproduction and classification (Sporne’s).
8. Distribution and economic importance of Gymnosperms.
9. Morphology of vegetative and reproductive parts, systematic position and life cycle of
 Pinus and Gnetum.

UNIT-IV.
11. Geological time scale;
References:

B.Sc (CBCS) Botany - I year
Semester-II - Paper-II
Bryophytes, Pteridophytes, Gymnosperms and Paleobotany

Theory Model Question Paper

Time : 2 hrs
Max. Marks: 40

Draw well-labeled diagrams wherever necessary.

1. Write short notes on any FOUR of the following: -

 a. Gemma cup.

 b. Protostele.

 c. *Pinus* pollen grain.

 d. *Ptilophyllum*.

 e. *Anthoceros* thallus

 f. Fossilization

II. Essay Questions:

 4 X 8 = 32M

1. a. Write about the structure & evolution of sporophyte in *Anthoceros*.

 (OR)

 b. Describe the gametophores of *Marchantia*.

2. a. Describe the anatomy of *Equisetum* stem & add a note on its ecological adaptations.

 (OR)

 b. Discuss in detail the internal structure of the sporocarp of *Marsilea*.

3. a. Describe the anatomy of *Pinus* needle with a well labeled diagram.

 (OR)

 b. Give an account of general characters of Gymnosperms.

4. a. Describe the general characters of Bennettitales.

 (OR)

 b. Write about economic importance of Gymnosperms.
B.Sc (CBCS) Botany- I year
Semester-II - Paper-II
Bryophytes, Pteridophytes, Gymnosperms and Paleobotany

(45 hours)

Practical Syllabus – 2016

1. Study of Morphology (vegetative and reproductive structures) and anatomy of the following
Bryophytes: *Marchantia, Anthoceros* and *Polytrichum.*

(9 h)

2. Study of Morphology (vegetative and reproductive structures) and anatomy of the following
Pteridophytes: *Lycopodium, Equisetum* and *Marsilea.*

(9 h)

(12h)

4. Study of Morphology (vegetative and reproductive structures) of the following taxa:
Gymnosperms: *Pinus* and *Gnetum.*

(6 h)

5. Study of Anatomical features of *Pinus* needle and *Gnetum* stem by preparing double stained permanent mounts.

(6h)

6. Fossil forms using permanent slides / photographs: *Rhynia* and *Cycadeoidea.*

(3h)
B.Sc (CBCS) Botany- I year
Semester-II - Paper-II
Bryophytes, Pteridophytes, Gymnosperms and Paleobotany

Practical Model Paper

Time : 2 1/2 hrs

Max. Marks: 25

1. Prepare a double stained permanent mount of the given material ‘A’ (Pteridophyte)
 Draw diagram & give reasons for identification.
 7M

2. Prepare a double stained permanent mount of the given material ‘B’ (Gymnosperms)
 Draw diagram & give reasons for identification.
 8M

3. Identify the given specimens C, D, E & F (Bryophyte – 2, Pteridophyte – 1 & Gymnosperm – 1)
 4 X 1 = 4M

4. Identify the given slides G, H, I & J (Bryophyte – 2, Pteridophyte – 1 & Gymnosperm – 1)
 4 X 1 = 4M

5. Record
 2M
UNIT - I
3. Nomenclature and Taxonomic resources: An introduction to ICBN, Vienna code - a brief account. Herbarium: Concept, techniques and applications. (4 h)

UNIT-II
4. Systematic study and economic importance of plants belonging to the following families:
 Polypetalae : Annonaceae, Capparidaceae, Rutaceae, Fabaceae (Faboideae/papilionoideae, Caesalpinioideae, Mimosoideae), Cucurbitaceae
5. Gamopetalae: Apiaceae, Asteraceae, Asclepiadaceae, Lamiaceae
6. Monochalmydeae: Amaranthaceae, Euphorbiaceae, Monocotyledons: Orchidaceae and Poaceae. (15h)

UNIT - III
7. Ethnomedicine: Scope, interdisciplinary nature, distinction of Ethnomedicine from Folklore medicine. (3h)
8. Outlines of Ayurveda, Siddha, Unani and Homeopathic systems of traditional medicine. Role of AYUSH, NMPB, CINMAP and CDRI. (5 h)
9. Plants in primary health care: Common medicinal plants – Tippateega (Tinospora cordifolia), tulasi (Ocimum sanctum), pippalli (Piper longum), Karakaya (Terminalia chebula), Kalabanda (Aloe vera), Turmeric (Curcuma longa). Evaluation of crude drugs. (7h)

UNIT-IV
10. Traditional medicine vs Modern medicine: Study of selected plant examples used in traditional medicine as resource (active principles, structure, usage and pharmacological action of modern medicine: Aswagandha (Withania somnifera), Sarpagandha (Rauwolfia serpentina), Nela usiri (Phyllanthus amarus), Amla (Phyllanthus emblica) and Brahmi (Bacopa monnieri). (8h)
12. Plant crude drugs: Types, methods of collection, processing and storage practices. (3h)
References:

12. London.
B.Sc (CBCS) BOTANY- II YEAR
Semester-III - Paper-III
Taxonomy of Angiosperms and Medicinal Botany

Theory Model Question Paper

Time: 2 hrs
Max. Marks: 40

Draw well-labeled diagrams wherever necessary.

1. Write short notes on any FOUR of the following: - 4 X 2 = 8M
 a. Artificial system of classification.
 b. Floral structure of Cucurbitaceae.
 c. Role of AYUSH and CIMAP.
 d. Active principles of Phyllanthus niruri.
 e. Herbarium
 f. Aloe vira

II. Essay Questions:

1 a. Discuss in detail the Bentham and Hooker’s system of classification and add a note on its merits and de-merits.
 (OR)
 b. Write an account on Chemotaxonomy.

2 a. Write salient features of the sub-family Fabaceae with a note on its economic importance.
 (OR)
 b. Discuss in detail the important characters of Asteraceae family with a note on its advanced characters.

3 a. Discuss the outline of Ayurvedic system of medicine.
 (OR)
 b. Write in detail organicleptic evaluation of Ocimum sanctum and its medicinal importance.

4 a. Discuss the morphological aspects of Rauwolfia serpentina and Discuss its medicinal importance.
 (OR)
 b. Write an account on methods of collection, processing and storage practices associated with Crude drugs.
B.Sc (CBCS) BOTANY - II YEAR
Semester-III - Paper-III
Taxonomy of Angiosperms and Medicinal Botany

Practical syllabus

(45 hours)·

1. Systematic study of locally available plants belonging to the families prescribed in theory syllabus
 (Minimum of one plant representative for each family) (24h)

2. Demonstration of herbarium techniques. (3 h)

3. Identification, medicinal value & active principle present in the following plants: Tulasi (*Ocimum sanctum*), Karakaya (*Terminalia chebula*), Kalabanda (*Aloe vera*). (6 h)

4. Ethnomedicinal value/practice of the following plants:
 Aswagandha (*Withania somnifera*), Sarpagandha (*Rauwolfia serpentina*), Amla (*Phyllanthus emblica*) and Brahmi (*Bacopa monnieri*). (6h)

5. Pharmacognosy:
 Powder analysis: Pippalu (*Piper longum*), Nela usiri (*Phyllanthus niruri*), Study of Organoleptic (sectional study) of the following:
 Tippateega (*Tinospora cordifolia*) and Turmeric (*Curcuma longa*). (6h)

6. Candidate have to submit at least 30 herbarium sheets
Practical Model Paper

Time: 2 1/2 hrs

1. Technical description of the given plant twig 'A'
 Max. Marks: 9M

2. Identify the given material 'B' & write its medicinal properties
 3M

3. Identify the specimen 'C' & write organoleptic evaluation
 3M

4. Identify the given material 'D' & discuss the ethno medicinal value of it.
 3M

5. Identify the given material 'E'. Write the active principle and uses
 3M

6. Herbarium
 2M

7. Record
 2M
UNIT - I:
1. Meristems: Types, histological organization of shoot and root apices and theories. (3h)
2. Tissues and Tissue Systems: Simple, complex and special tissues. (6 h)
3. Leaf: Ontogeny, diversity of internal structure; stomata and epidermal outgrowths. (6 h)

UNIT-II
4. Stem and root anatomy: Vascular cambium - Formation and function. (3h)
5. Anomalous secondary growth of Stem - Achyranthes, Boerhaavia, Bignonia, Dracaena; Root- Beta vulgaris (5h)
6. Wood structure: General account. Study of local timbers – Teak (Tectona grandis), Rosewood, (Dalbergia latifolia), Red sanders, (Pterocarpus santalinus) Nallamaddi (Terminalia tomentosa) and Neem (Azadirachta indica). (7h)

UNIT - III
7. Introduction: History and importance of Embryology. (2h)
8. Anther structure, Microsporogenesis and development of male gametophyte. (6h)
9. Ovule structure and types; Megasporogenesis; types and development of female gametophyte. (7h)

UNIT-IV
10. Pollination - Types; Pollen - pistil interaction. Fertilization. (4h)
11. Endosperm - Development and types. Embryo - development and types; Polyembryony and Apomixis - an outline. (5h)
12. Palynology- Pollen morphology, NPC system and application of Palynology. (6h)
References:
B.SC (CBCS) BOTANY - II YEAR
Semester-IV- Paper IV
Plant Anatomy, Embryology and Palynology
Theory Model Question Paper

Time: 2 hrs
Max. Marks: 40

Draw well labeled diagrams wherever necessary.

I. Write short notes on any FOUR of the following: -
 4 X 2 = 8M
 a. Types of Stomata.
 b. parenchyma.
 c. Different types of Ovules.
 d. Exine stratification.
 e. Rose Wood
 f. Polyembryony

II. Essay Questions:
 4 X 8 = 32M
 1 a. Classify Meristems ? Discuss in detail the various types of meristems.
 (OR)
 b. Theories associated with root apices.

 2 a. Primary and secondary structure of Boerhaavia diffusa stem.
 (OR)
 b. Describe in detail the wood structure of Pterocarpus santalinus.

 3 a. Discuss different Embryo sacs studied by you.
 (OR)
 b. Describe the development of Male Gametophyte.

 4 a. Describe in detail various steps in Fertilization.
 (OR)
 b. Discuss in detail the various applications of Palynology.

485
B.SC (CBCS) BOTANY - II YEAR
Semester-IV- Paper IV
Plant Anatomy, Embryology and Palynology

Practical syllabus

(45 hours)

Suggested Laboratory Exercises:

1. Demonstration of double staining technique. (3 h)
2. Tissue organization in root and shoot apices using permanent slides (3 h)
3. Preparation of double stained Permanent slides (6 h)
 Primary structure: Root - *Cicer, Cannna*; Stem – *Tridax, Sorghum*
 Secondary structure: Root – *Tridax sp.;* Stem – *Pongamia*
 Anomalous secondary structure: Examples as given in theory syllabus. (6 h)
4. Stomatal types using epidermal peels. (3 h)
6. Structure of anther and microsporogenesis using permanent slides. (3 h)
7. Structure of pollen grains using whole mounts - *Hibiscus, Acacia* and Grass). (3 h)
8. Pollen viability test using Evans Blue – *Hibiscus* (3 h)
9. Study of ovule types and developmental stages of embryosac. (3 h)
10. Structure of endosperm (nuclear and cellular); Developmental stages of dicot and monocot embryos using permanent slides. (3 h)
11. Isolation and mounting of embryo (using *Cymopsis / Senna / Crotalaria*) (3 h)
B.SC (CBCS) BOTANY- II YEAR
Semester-IV- Paper IV
Plant Anatomy, Embryology and Palynology

Practical Model Paper

Time: 2 1/2 hrs

Max. marks: 25

1. Prepare a double stained permanent mount of transverse section of

 given material "A". 9M

2. Prepare a temporary mount of epidermal peel of the given leaf

 material "B" and identify the stomatal type. 4M

3. Conduct the pollen viability test "C" (OR) Isolate the embryo from

 the given material. 4M

4. Identify and describe the specimens / slides with well labelled diagrams

 (a) Embryology – D (b) Palynology – E (c) Anatomy – F 3 X 2 = 6M

5. Record 2M
B.Sc Botany- III Year
Semester-V - Paper-V
Cell Biology and Genetics

DSC-1E (3 hrs./week) Theory Syllabus

Credits-3
45 hours

Unit - I:

1. Plant cell envelops: Ultra structure of cell wall, molecular organization of cell membranes. (4h)

2. Nucleus: Ultra structure, Nucleic acids - Structure of DNA, types and functions of RNA. (4 h)

4. Extra nucleolus genome: Mitochondrial and plastid DNA, plasmids. (3 h)

Unit - II:

5. Cell division: Cell and its regulation; mitosis, meiosis and their significance (3h)

6. Mendelism: Laws of inheritance. Genetic interactions - Epistasis, Complementary, Supplementary and inhibitory genes. (5h)

7. Linkage: A brief account and theories of Linkage. Crossing over: Mechanism and theories of crossing over. (4 h)

8. Genetic maps: Construction of genetic maps with Two point and Three point test cross data. (3h)

Unit - III:

9. Mutations: Chromosomal aberrations - structural and numerical changes; Gene mutations, Transposable elements. (3 h)

10. Gene Organization- Structure of gene, Genetic code, Method of Replication of DNA in Eukaryotes & Prokaryotes (3h)

11. Mechanism of transcription in Prokaryotes and Eukaryotes, translation (4h)

12. Regulation of gene expression in prokaryotes (Lac and Trp. Operons). (2h)
References:

B.Sc Botany- III Year
Semester-V - Paper-V
Cell Biology and Genetics

Theory Model Question Paper

Time: 2 hrs

Max. Marks: 40

Draw well-labeled diagrams wherever necessary.

I. Write short notes on any FOUR of the following: -

4 X 2 1/2 = 10 M

a. t-RNA
b. Crossing over
c. Transversions
d. Cistron
e. Karyotype
f. Plasmids

II. Essay Questions:

3 X 10 = 30 M

1. a. Give a brief account of Heterochromatin and Euchromatin.

 (OR)

 b. Explain in detail the membrane model with reference to Fluid mosaic.

2. a. Discuss in detail Mendel’s law of Inheritance.

 (OR)

 b. Explain Mitosis in detail with significance.

3. a. Discuss in brief account of construction of genetic maps.

 (OR)

 b. What is Mutations? Explain chromosomal aberrations.
B.Sc (CBCS) Botany- III Year
Semester-V - Paper-V
Cell Biology and Genetics

Practical Syllabus

(45 hours)

1. Demonstration of cytochemical methods: Fixation of plant material and nuclear staining for mitotic and meiotic studies. (6 h)

2. Study of various stages of mitosis using cytological preparation of Onion root tips. (6 h)

3. Study of various stages of meiosis using cytological preparation of Onion flower buds. (3 h)

5. Solving genetic problems related to monohybrid, dihybrid ratio incomplete dominance and interaction of genes (minimum of six problems in each topic). (12h)

6. Construction of linkage maps; two and three point test cross. (6 h)

7. Study of ultra structure of cell organelles using photographers. (6h)

8. Study of Special types of Chromosomes (6h)
Practical Model Question Paper

Time: 2 1/2 hrs

1. Prepare a cytological slide of given material A and identify & describe any two stages with well labeled diagrams. (8 marks)

2. Solve genetic problems B related to dihybrid ratio or incomplete dominance (6 marks)

3. Solve the genetic problem C related to interaction of genes. (5 Marks)

4. Slides C-Cell organelles
 D-Chromosomes (2+2=4 marks)

5. Record (2 marks)

Max. marks: 25
UNIT - I

1. Water Relations: Importance of water to plant life, physical properties of water, diffusion, imbibition, osmosis; water, osmotic and pressure potentials; absorption, transport of water, ascent of sap; transpiration; Stomatal structure and movements. (7h)

2. Mineral Nutrition: Essential macro and micro mineral nutrients and their role; symptoms of mineral deficiency. (3h)

3. Stress physiology: concept and plant responses to water, salt and temperature stresses (2h)

4. Translocation of organic substances: Mechanism of phloem transport; source-sink relationships. (2h)

UNIT - II

5. Enzymes: Nomenclature, characteristics, mechanism and regulation of enzyme action, enzyme kinetics, factors regulating enzyme action. (4h)

6. Photosynthesis: Photosynthetic pigments, absorption and action spectra; Red drop and Emerson enhancement effect; concept of two photosystems; mechanism of photosynthetic electron transport and evolution of oxygen; Factors effecting Photosynthesis, photophosphorylation. (4h)

7. Carbon assimilation pathways: C3, C4 and CAM. (4h)

8. Respiration: Aerobic and Anaerobic; Glycolysis, Krebs cycle; electron transport system, mechanism of oxidative phosphorylation, pentose phosphate pathway. (6h)

UNIT - III

9. Nitrogen Metabolism: Biological nitrogen fixation, nitrate reduction, ammonia assimilation, (GS-GOGAT, transamination) (4h)

10. Lipid Metabolism: Structure and function of lipids. (3h)

11. Growth and Development: Physiological effects of phytohormones—Auxins, gibberellins, cytokinins, ABA, ethylene and brassinosteroids (3h)

12. Physiology of flowering and photoperiodism. Role of Phytochrome in flowering. (3h)
References:

B.Sc (CBCS) Botany: III Year
Semester-VI - Paper-VIII
Plant Physiology

Theory Model Question Paper

Time : 2 hrs
Max. Marks: 40

Draw well labeled diagrams wherever necessary.

I. Write short notes on any FOUR of the following: -
4 X 2\(\frac{1}{2}\) = 10 M

a. Plasmolysis
b. Role of Zinc
c. Respiratory quotient
d. Red drop Effect
e. Types of stomata
f. Auxins

II. Essay Questions:
3 X 10 = 30 M

1 a. Write a note on theories of stomatal movement regarding transpiration.
(OR)
b. Describe plant responses to water, salt and temperature.

2 a. Give an account of IUB system of classification, with a note on enzyme action.
(OR)
b. Discuss Calvin cycle.

3 a. Give an account on Kreb’s cycle.
(OR)
b. Give a brief account on Nitrogen Fixation.
Practical Syllabus

1. Determination of osmotic potential of vacuolar sap by Plasmolytic method using leaves of *Rheodiscolor* / *Tradescantia*. (6h)
2. Determination of rate of transpiration using Cobalt chloride method (3h)
3. Determination of stomatal frequency using leaf epidermal peelings / impressions (6h)
4. Determination of catalase activity using potato tubers by titration method (6h)
5. Separation of chloroplast pigments using paper chromatography technique (12h)
6. Estimation of protein by Biurette method (6h)
7. Mineral deficiency- Detail study of Micronutrients and Macro nutrients (3h)
8. Identification of C$_3$, C$_4$ and CAM plants (3h)
B.Sc (CBCS) Botany: III Year
Semester-VI - Paper-VIII
Plant Physiology

Practical Model paper
Max. marks: 25

Time: 2 1/2 hrs

I. Major Experiment: A
(9marks)
2. Determination of Catalase activity – Potato, tubers by titration method.

II. Minor Experiment: B
(7marks)
1. Determination of Stomatal frequency using leaf epidermal peel/impressions.
2. Determination of Rate of transpiration by Cobalt chloride method.

III. Identify and Comment on: C, D & E
(3x2=6)
Micronutrient Deficiency / Macronutrients Deficiency / C3, C4 and CAM plants.

IV. Record
(2marks)

[Signatures]