KAKATIYA UNIVERSITY, WARANGAL - 506 009 # **B.Sc. PROGRAMME** Under CBCS System Scheme wef A.Y: 2019-20 ## FIRST YEAR # **SEMESTER - I** | | | | | | Max. Marks | | | | | |-------|-----------------|------------------------------|-----------|-------------------|-------------|------------|----------------|-----|-----| | Code | Course category | Little of the Paper | Hrs
PW | Interna
I Exam | End
Exam | Lab | Total
Marks | | | | BS101 | AECC-1 | Environmental Science | 2 | 2 | 10 | 40 | - | 50 | | | BS102 | FL-1A | English | 4 | 4 | 20 | 80 | - | 100 | | | BS103 | SL-1A | Second Language | 4 | 4 | 20 | 80 | - | 100 | | | | DSC-1A | Optional - I | 4 | 4 | 20 | 80 | 25 | | | | BS104 | | Optional – I Lab | 1 | 3 | | | | 125 | | | DC40# | Dag 44 | Optional– II | 4 | 4 | •• | 20 | 00 | | 105 | | BS105 | DSC-2A | Optional – II LAB | 1 | 3 | 20 | 80 | 25 | 125 | | | BS106 | DSC-3A | Optional – III | 4 | 4 | 20 | 80 | 25 | 125 | | | DS100 | | Optional – III LAB | 1 | 3 | | 0 0 | | | | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | | # SEMESTER - II | | | | | | Max. Marks | | | | | |-----------|-----------------|--|-------------------|-----------|-------------------|-------------|-----|----------------|--| | Code | Course category | Title of the Paper | No. of
Credits | Hrs
PW | Interna
I Exam | End
Exam | Lab | Total
Marks | | | BS201 | AECC-2 | Basic Computer Skills
(Taught by: Computer Science) | 2 | 2 | 10 | 40 | - | 50 | | | BS202 | FL-2B | English | 4 | 4 | 20 | 80 | - | 100 | | | BS203 | SL-2B | Second Language | 4 | 4 | 20 | 80 | - | 100 | | | | | Optional - I | 4 | 4 | 20 | | | | | | BS204 | DSC-1B | Optional – I Lab | 1 | 3 | | 80 | 25 | 125 | | | D.C. 6.0. | D.C. 4D | Optional – II | 4 | 4 | | | | | | | BS205 | BS205 DSC-2B | Optional – II Lab | 1 | 3 | 20 | 80 | 25 | 125 | | | DC204 | DSC-3B | Optional – III | 4 | 4 | 20 | 90 | 25 | 125 | | | BS206 | | Optional – III LAB | 1 | 3 | 20 | 80 | | | | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | | # KAKATIYA UNIVERSITY, WARANGAL - 506 009 # **B.Sc. PROGRAMME** Under CBCS System Scheme wef A.Y: 2020-21 # SECOND YEAR #### **SEMESTER - III** | | _ | Title of the Paper No. of Credits | | | Max. Marks | | | | |--------|-----------------|---|-----------|-------------------|-------------|-----|----------------|-----| | Code | Course category | | Hrs
PW | Interna
I Exam | End
Exam | Lab | Total
Marks | | | BS 301 | SEC-1 | Fundamentals of
Nano Technology
(Taught by : Physics) | 2 | 2 | 10 | 40 | - | 50 | | BS 302 | SEC-2 | Bio Statistics
(Taught by : Statistics) | 2 | 2 | 10 | 40 | - | 50 | | BS 303 | FL-3 A | English | 3 | 3 | 15 | 60 | - | 75 | | BS 304 | SL-3 B | Second Language | 3 | 3 | 15 | 60 | - | 75 | | | | Optional - I | 4 | 4 | 20 | | 25 | | | BS 305 | DSC-1C | Optional – I Lab | 1 | 3 | | 80 | | 125 | | DC 204 | Dec 20 | Optional – II | 4 | 4 | 20 | 00 | 25 | 125 | | BS 306 | DSC-2C | Optional– II Lab | 1 | 3 | | 80 | | 125 | | DC 205 | DSC-3C | Optional – III | 4 | 4 | 20 | | 25 | 105 | | BS 307 | | Optional – III Lab | 1 | 3 | | 80 | 25 | 125 | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | # **SEMESTER - IV** | | | Title of the Paper | | Hrs
PW | Max. Marks | | | | | | |--------|-----------------|--|-------------------|-----------|-------------------|-------------|-----|----------------|-----|------| | Code | Course category | | No. of
Credits | | Interna
I Exam | End
Exam | Lab | Total
Marks | | | | BS401 | SEC-3 | Fundamentals of Python
(Taught by: Computer Science) | 2 | 2 | 10 | 40 | - | 50 | | | | BS402 | SEC-4 | Remedial Methods of Pollution –
Drinking Water & Soil Fertility
(Taught by: Chemistry) | 2 | 2 | 10 | 40 | ı | 50 | | | | BS403 | FL-4 A | English | 3 | 3 | 15 | 60 | - | 75 | | | | BS404 | SL-4 B | Second Language | 3 | 3 | 15 | 60 | - | 75 | | | | DG 40. | D004D | Optional - I | 4 | 4 | | | | | | 40.7 | | BS405 | DSC-1D | Optional – I Lab | 1 | 3 | 20 | 80 | 25 | 125 | | | | BS406 | DSC-2D | Optional – II | 4 | 4 | - 20 | 90 | 25 | 125 | | | | D5400 | DSC-2D | Optional – II Lab | 1 | 3 | | 20 80 | 90 | 25 | 125 | | | DC407 | DSC-3D | Optional – III | 4 | 4 | 20 | 20 | 00 | 25 | 125 | | | BS407 | | Optional– III Lab | 1 | 3 | | 80 | 25 | 125 | | | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | | | # KAKATIYA UNIVERSITY, WARANGAL - 506 009 B.Sc. PROGRAMME # Under CBCS System Scheme wef A.Y: 2021-2022 ## THIRD YEAR # **SEMESTER - V** | | | | | | М | | | | |---------|----------------|--|-------------------|-----------|----------------------|-------------|-----|----------------| | Code | Course
Type | Title of the Paper | No. of
Credits | Hrs
PW | Interna
I
Exam | End
Exam | Lab | Total
Marks | | BS 501 | FL-5 A | English | 3 | 3 | 15 | 60 | ı | 75 | | BS 502 | SL-5 B | Second Language | 3 | 3 | 15 | 60 | - | 75 | | BS 503 | G.E. | Water Resources Management
(Taught by: Any Science Dept.) | 4 | 4 | 20 | 80 | - | 100 | | DG #0.4 | D. G. T. T. | Optional – I | 4 | 4 | 20 | 0.0 | 25 | | | BS 504 | DSE-1E | Optional – I Lab | 1 | 3 | | 80 | | 125 | | DC 505 | DCE 1E | Optional – II | 4 | 4 | 20 | 80 | 25 | 125 | | BS 505 | DSE-2E | Optional – II Lab | 1 | 3 | 20 | | | 125 | | DC506 | DSE-3E | Optional – III | 4 | 4 | 20 | 80 | 25 | 125 | | BS506 | | Optional – III Lab | 1 | 3 | | | 25 | 125 | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | # **SEMESTER - VI** | | _ | | | | Max. Marks | | | | |--------|-------------------|--|--------------------------|-----------|------------------|-------------|-----|----------------| | (Code | Course
Type | Title of the Paper | No. of
Credits | Hrs
PW | Internal
Exam | End
Exam | Lab | Total
Marks | | BS 601 | FL-6A | English | 3 | 3 | 15 | 60 | - | 75 | | BS 602 | SL-6 B | Second Language | 3 | 3 | 15 | 60 | - | 75 | | BS 603 | P.W /
Optional | Optional: Public Health & Hygiene
(Taught by: Zoology / Botany /
Biotechnology / Micro Biology) | 4 | 4 | 20 | 80 | - | 100 | | | | Optional - I | 4 | 4 | 20 | 80 | 25 | 125 | | BS 604 | DSE-1F | Optional – I Lab | 1 | 3 | | | | | | DC (05 | DOE AE | Optional – II | 4 | 4 | 20 | 80 | 25 | 125 | | BS 605 | DSE-2F | Optional – II Lab | 1 | 3 | | | | | | BS 606 | DCE 2E | Optional – III | 4 | 4 | 20 | 80 | 25 | 125 | | | DSE-3F | Optional – III Lab | 1 | 3 | | | | 125 | | | | TOTAL: | 25 | - | 110 | 440 | 75 | 625 | | NSS/NCC/Sp
orts/Extra
Curricular | Credits
under
Non –
CGPA | Up to 6 (2 in each Year) | Up to 6 (2 in each Year) | Up to 6 (2 in each Year) | |--|-----------------------------------|-----------------------------------|--------------------------------|-----------------------------------| | Summer | 4 | Up to 4 (2 in each, after I & II | Up to 4 (2 in each, after I & | Up to 4 (2 in each, after I & II | | internship | • | years | II years | years | F.L : First Language; S.L : Second Language; A.E.C.C: Ability Enhancement Compulsory Course; S.E.C : Skill Enhancement Course;D.S.C : Discipline Specific Course;D.S.E : Discipline Specific Effective; G.E : Generic Elective;P.W : Project Work; # B.Sc I Yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER I Paper - I Chemistry - I # Unit-I (Inorganic Chemistry) S1- I-1. Chemical Bonding 15 h (1 hr/week) 8 h Ionic solids- lattice and solvation energy, solubility of ionic solids, Fajan's rule, polarity and polarizability of ions. VSPER Theory - Common hybridization-sp, sp², sp³ , sp³d, sp³d² and sp³d³, shapes of molecules. Molecular orbital theory: Shapes and sign convention of atomic orbitals. Modes of bonds. Criteria for orbital overlap. LCAO concept. π and σ overlapping. Concept of Types of molecular orbitals- bonding, antibonding and non bonding. MOED of homonuclear diatomics - H_2 , N_2 , O_2^- , O_2^{2-} , F_2 (unhybridized diagrams only) and heteronuclear diatomics CO, CN⁻, NO, NO⁺ and HF. Bond order, stability and magnetic properties. # S1-I-2. p-Block Elements 1 7 h Structure of diborane and higher Boranes (B₄H₁₀ and B₅H₉), Boron nitrogen Group-13: compounds $(B_3N_3H_6)$ and BN), Lewis acid Group - 14: Carbides-Classification - ionic, covalent, interstitial - .Structures and reactivity. nature Industrial applications. Silicones - Classification - straight chain, cyclic and cross-linked. Group - 15: Nitrides - Classification - ionic, covalent and interstitial. Reactivity - hydrolysis. Reactions of hydrazine, hydroxyl amine, phosphazenes. # Unit - II (Organic Chemistry) 15h(1 hr/week) # S1-O-1: Structural Theory in Organic Chemistry 5 h Bond polarization: Factors influencing the polarization of covalent bonds, electro negativity inductive effect. Application of inductive effect (a) Basicity of amines (b) Acidity of carboxylic acids (c) Stability of carbonium ions. Resonance - Mesomeric effect, application to (a) acidity of phenol. (b) acidity of carboxylic acids and basicity of anilines. Stability of carbo cations, carbanions and free radicals. Hyper conjugation and its application to stability of carbonium ions, free radicals and alkenes. # S1-O-2: Acyclic Hydrocarbons 6 h Alkanes- Methods of preparation: From Grignard reagent, Kolbe synthesis. Chemical reactivity - inert nature, free radical substitution, Halogenation example- reactivity, selectivity and orientation. Alkenes - Preparation of alkenes (with mechanism) (a) by dehydration of alcohols (b) dehydrohalogenation of alkyl halides (c) by dehalogenation of 1,2 dihalides, Zaitsev's rule. Properties: Anti-addition of halogen and its mechanism. Addition of HX, Markonikov's rule, addition
of H₂O, HOX, H₂SO₄ with mechanism and addition of HBr in the presence of peroxide (anti – Markonikov's addition). Oxidation (cis – additions) – hydroxylation by KMnO₄, OsO₄, anti addition- peracids (via epoxidation), hydroboration, ozonolysis - location of double bond. Dienes - Types of dienes, reactions of conjugated dienes - 1,2 and 1,4 addition of HBr to 1,3 butadiene and Diels - Alder reaction. Alkynes- Preparation by dehydrohalogenation of vicinal dihalides, dehalogenation of tetrahalides. Physical Properties: Chemical reactivity – electrophilic addition of X₂, HX, H₂O (tautomerism), Oxidation (formation of enediol, 1,2 diones and carboxylic acids) and reduction (Metal-ammonia reduction, catalytic hydrogenation). ## Aromatic Hydrocarbons 4h Introduction to aromaticity: Huckel's rule - Benzene, Naphthalene and Anthracene. Reactions -General mechanism of electrophilic substitution, mechanism of nitration, sulphonation and halogenation, Friedel Craft's alkylation and acylation. Orientation of aromatic substitution -Definition of ortho, para, and meta directing groups. Ring activating and deactivating groups with examples. Orientation - (i) activating groups: Amino, methoxy and alkyl groups. (ii) Deactivating groups - nitro, nitrile, carbonyl, carboxylic acid, sulphonic acid and halo groups. # Unit - III (Physical Chemistry) 15h(1 hr/week) # S1-P-1: Atomic structure and elementary quantum mechanics 3 h Black body radiation, heat capacities of solids, Rayleigh Jeans law, Planck's radiation law, photoelectric effect, Limitations of classical mechanics, Compton effect, de Broglie's hypothesis. Heisenberg's uncertainty principle. #### S1-P-2: Gaseous State Deviation of real gases from ideal behavior. van der Waals equation of state. Critical phenomenon. PV isotherms of real gases, continuity of state. Andrew's isotherms of CO2. The van der Waal's equation and critical state. Derivation of relationship between critical constants and var der Waal's constants. The law of corresponding states, reduced equation of states. Joule Thomson effect and inversion temperature of a gas. Liquifaction of gases: i) Linde's method based on Joule Thomson effect ii) Claude's method based on adiabatic expansion of a gas. # S1-P-3: Liquid State and Solutions 4h # Liquid State Intermolecular forces, structure of liquids (qualitative description). Structural differences between solids, liquids and gases. Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). #### Solutions Liquid - liquid mixtures, ideal liquid mixtures, Raoult's and Henry's laws. Non ideal systems. Azeotropes: HCl-H₂O and C₂H₅OH - H₂O systems. Fractional distillation. Partially miscible liquids: Phenol - Water, Trimethyl amine - Water and Nicotine - Water systems. gffather Ester 26/06/19 26/06/19 ## Unit - IV (General Chemistry) #### S1-G-1. General Principles of Inorganic Qualitative Analysis 6 h Anion analysis: Theory of sodium carbonate extract, classification and reactions of anions- CO_3^{2-} , Cl^- , Br^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , CH_3COO^- , NO_3^- . Interfering ions. Cation Analysis: Principles involved - Solubility product, common ion effect, general discussion for the separation and identification of group I individual cations $(Hg_2^{2+}, Ag^+, Pb^{2+})$ with flow chart and chemical equations. Principle involved in separation of group II & IV cations. General discussion for the separation and identification of group II $(Hg^{2+}, Pb^{2+}, Bi^{3+}, Cd^{2+}, Sb^{3+})$, III (Al^{3+}, Fe^{3+}) , IV (Mn^{2+}, Zn^{2+}) individual cations with flow chart and chemical equations. General discussion for the separation and identification of group V individual cations $(Ba^{2+}, Sr^{2+}, Ca^{2+})$ with flow chart and chemical equations. Theory of flame test. Identification of Group VI cations (Mg^{2+}, NH_4^+) . S1-G-2. Isomerism 5h **Isomerism:** Definition of isomers. Classification of isomers: Constitutional and Stereoisomers - definition and examples. Constitutional isomers: chain, functional and positional isomers. Stereoisomers: enantiomers and diastereomers – definitions and examples. Representation of stereoisomers – Wedge, Fischer projection, Sawhorse, Newmann formulae. Conformational analysis: Classification of stereoisomers based on energy. Definition and examples Conformational and configurational isomers. Conformational analysis of ethane, n-butane, 1,2- dichloroethane,2-chloroethanol .Cyclic compounds: Baeyer's strain theory, Conformational analysis of cyclohexane Cis-trans isomerism: E-Z-Nomenclature #### S1-G-3: Solid state Chemistry 4 h Laws of Crystallography: (i) Law of Constancy of interfacial angles (ii) Law of Symmetry-Symmetry elements in crystals (iii) Law of rationality of indices. Definition of space lattice, unit cell. Bravais Lattices and Seven Crystal systems (a brief review). X-ray diffraction by crystals; Derivation of Bragg's equation. Determination of structure of NaCl, KCl and CsCl (Bragg's method and Powder method). #### References General reference: B.Sc I Year Chemistry: Semester I, Telugu Academy publication, Hyd Unit- I - 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996. - 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. - 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. Chem. Muller 25/06/19 26/06/19 - 5. Inorganic Chemistry Principles of structure and reactivity by James E. Huhey, - E.A. Keiter and R.L. Keiter 4th edn. - 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989. - 7. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999. - 9. Textbook of Inorganic Chemistry by R Gopalan. #### Unit- II - 1. Organic Chemistry by Morrison and Boyd. - 2. Organic Chemistry by Graham Solomons. - 3. Organic Chemistry by Bruice Yuranis Powla. - 4. Organic Chemistry by L. G. Wade Jr. - 5. Organic Chemistry by M. Jones, Jr - 6. Organic Chemistry by John McMurry. - 7. Organic Chemistry by Soni. - 8. General Organic chemistry by Sachin Kumar Ghosh. - 9. Organic Chemistry by C N pillai #### Unit III - 1. Principles of physical chemistry by Prutton and Marron. - 2. Text Book of Physical Chemistry by Soni and Dharmahara... - 3. Text Book of Physical Chemistry by Puri and Sharma. - 4. Text Book of Physical Chemistry by K. L. Kapoor. - 5. Physical Chemistry through problems by S.K. Dogra. - 6. Text Book of Physical Chemistry by R.P. Verma. - 7. Elements of Physical Chemistry by Lewis Glasstone. #### **Unit IV** - 1. Qualitative analysis by Welcher and Hahn. - 2. Vogel's Qualitative Inorganic Analysis by Svehla. - 3. Text Book of Organic Chemistry by Morrison And Boyd. - 4. Text Book of Organic Chemistry by Graham Solomons. - 5. Text Book of Organic Chemistry by Bruice Yuranis Powla. - 6. Text Book of Organic Chemistry by Soni. - 7. Text Book of Physical Chemistry by Soni And Dharmahara... - 8. Text Book of Physical Chemistry by Puri And Sharma. - 9. Text Book of Physical Chemistry by K. L. Kapoor. #### Laboratory Course 45h (3 h / week) #### Paper I - Qualitative Analysis - Semi micro analysis of mixtures Analysis of two anions (one simple, one interfering) and two cations in the given mixture. Anions: CO_3^{2-} , SO_3^{2-} , S^{2-} , Cl^- , Br^- , l^- , CH_3COO^- , NO_3^- , PO_4^{3-} , BO_3^{3-} , SO_4^{2-} . Cations: Hg_2^{2+} , Ag^+ , Pb^{2+} Hg^{2+} , Pb^{2+} , Bi^{3+} , Cd^{2+} , Cu^{2+} , $As^{3+/5+}$, $Sb^{3+/5+}$, $Sn^{2+/4+}$, Al^{3+} , Cr^{3+} , Fe^{3+} Zn^{2+} , Ni^{2+} , Co^{2+} , Mn^{2+} Ba^{2+} , Sr^{2+} , Ca^{2+} Mg^{2+}, NH_4^+ # **B.Sc I Yr CHEMISTRY** SEMESTER WISE SYLLABUS SEMESTER II Paper – II Chemistry - II Unit-I (Inorganic Chemistry) 15 h (1 hr/week) S2-I-1 p-block Elements -II Oxides: Types of oxides (a) Normal- acidic, basic amphoteric and neutral (b) Mixed (c) sub oxide d) peroxide e) superoxide. Structure of oxides of C, N, P, S and Cl - reactivity, thermal stability, hydrolysis. Oxy acids: Structure and acidic nature of oxyacids of B, C, N, P, S, Cl and I. Redox properties of oxyacids of Nitrogen: HNO2 (reaction with FeSO4, KMnO4, K2Cr2O7), HNO3 (reaction with H₂S, Cu), HNO₄ (reaction with KBr, Aniline), H₂N₂O₂ (reaction with KMnO₄). Redox properties of oxyacids of Phosphorus: H₃PO₂ (reaction with HgCl₂), H₃PO₃ (reaction with AgNO₃, CuSO₄). Redox properties of oxyacids of Sulphur: H2SO3 (reaction with KMnO4, K2Cr2O3), H2SO4 (reaction with Zn, Fe, Cu), H₂S₂O₃ (reaction with Cu, Au), H₂SO₅ (reaction with KI, FeSO₄), H₂S₂O₈ (reaction with FeSO₄, KI). Redox properties of oxy acids of Chlorine. Interhalogens- Classification- general preparation- structures of AB, AB₃, AB₅ and AB₇ type and *Poly halides*- Definition and structure of ICl_2^- , ICl_4^- and I_3 . Pseudohalogens: Comparision with halogens. S2-I-2: Chemistry of Zero group elements Isolation of noble gases, Structure, bonding and reactivity of Xenon compounds - Oxides, Halides and Oxy-halides. Clatherate compounds and Anomalous behavior of He (II) S2-I-3: Chemistry of d-block elements Characteristics of d-block elements with special reference to electronic configuration, variable valence, ability to form complexes, magnetic properties &catalytic properties. Stability of various oxidation states and standard reduction potentials. Comparative treatment of second and third transition series with their 3d analogues. Study of Ti, Cr and Cu traids. Titanium triad electronic configuration and reactivity of +3 and +4 states - oxides and halides. Chromium triad - reactivity of +3 and +6 states. Copper triad - reactivity of +1, +2 and +3 states. Unit - II (Organic Chemistry) 15h(1 hr/week) S2-O-1: Halogen compounds 4 hrs
Classification: alkyl (primary, secondary, tertiary), aryl, aralkyl, allyl, vinyl, benzyl. Chemical reactivity - reduction, formation of RMgX, Nucleophilic substitution reactions classification into S_N1 and S_N2 . Mechanism and energy profile diagrams of S_N1 and S_N2 reactions. Stereochemistry of S_N2 (Walden Inversion) 2-bromobutane, S_N1 (Racemisation) 1bromo-1-phenylpropane Structure and reactivity - Ease of hydrolysis - comparison of alkyl, vinyl, allyl, aryl, and benzyl halides. # S1-G-1. General Principles of Inorganic Qualitative Analysis 6 h Anion analysis: Theory of sodium carbonate extract, classification and reactions of anions- CO_3^{2-} , Cl^- , Br^- , SO_4^{2-} , PO_4^{3-} , BO_3^{3-} , CH_3COO^- , NO_3^- . Interfering ions. Cation Analysis: Principles involved - Solubility product, common ion effect, general discussion for the separation and identification of group I individual cations $(Hg_2^{2+}, Ag^+, Pb^{2+})$ with flow chart and chemical equations. Principle involved in separation of group II & IV cations. General discussion for the separation and identification of group II $(Hg^{2+}, Pb^{2+}, Bi^{3+}, Cd^{2+}, Sb^{3+})$, III (Al^{3+}, Fe^{3+}) , IV (Mn^{2+}, Zn^{2+}) individual cations with flow chart and chemical equations. General discussion for the separation and identification of group V individual cations $(Ba^{2+}, Sr^{2+}, Ca^{2+})$ with flow chart and chemical equations. Theory of flame test. Identification of Group VI cations (Mg^{2+}, NH_4^+) . S1-G-2. Isomerism 5h **Isomerism:** Definition of isomers. Classification of isomers: Constitutional and Stereoisomers - definition and examples. Constitutional isomers: chain, functional and positional isomers. Stereoisomers: enantiomers and diastereomers – definitions and examples. Representation of stereoisomers – Wedge, Fischer projection, Sawhorse, Newmann formulae. Conformational analysis: Classification of stereoisomers based on energy. Definition and examples Conformational and configurational isomers. Conformational analysis of ethane, n-butane, 1,2- dichloroethane,2-chloroethanol .Cyclic compounds: Baeyer's strain theory, Conformational analysis of cyclohexane Cis-trans isomerism: E-Z-Nomenclature # S1-G-3: Solid state Chemistry 4 h Laws of Crystallography: (i) Law of Constancy of interfacial angles (ii) Law of Symmetry-Symmetry elements in crystals (iii) Law of rationality of indices. Definition of space lattice, unit cell. Bravais Lattices and Seven Crystal systems (a brief review). X-ray diffraction by crystals; Derivation of Bragg's equation. Determination of structure of NaCl, KCl and CsCl (Bragg's method and Powder method). ## References General reference: B.Sc I Year Chemistry: Semester I, Telugu Academy publication, Hyd Unit- I 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996. 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. Chem. John 25/06/19 and the second 26/6/19 Janli anti addition- peracids (via epoxidation), hydroboration, ozonolysis - location of double bond. Dienes - Types of dienes, reactions of conjugated dienes - 1,2 and 1,4 addition of HBr to 1,3 butadiene and Diels – Alder reaction. Alkynes- Preparation by dehydrohalogenation of vicinal dihalides, dehalogenation of tetrahalides. Physical Properties: Chemical reactivity - electrophilic addition of X2, HX, H2O (tautomerism), Oxidation (formation of enediol, 1,2 diones and carboxylic acids) and reduction (Metal-ammonia reduction, catalytic hydrogenation). ## Aromatic Hydrocarbons 4h Introduction to aromaticity: Huckel's rule - Benzene, Naphthalene and Anthracene. Reactions -General mechanism of electrophilic substitution, mechanism of nitration, sulphonation and halogenation, Friedel Craft's alkylation and acylation. Orientation of aromatic substitution -Definition of ortho, para, and meta directing groups. Ring activating and deactivating groups with examples. Orientation - (i) activating groups: Amino, methoxy and alkyl groups. (ii) Deactivating groups - nitro, nitrile, carbonyl, carboxylic acid, sulphonic acid and halo groups. # Unit – III (Physical Chemistry) 15h(1 hr/week) # S1-P-1: Atomic structure and elementary quantum mechanics 3 h Black body radiation, heat capacities of solids, Rayleigh Jeans law, Planck's radiation law, photoelectric effect, Limitations of classical mechanics, Compton effect, de Broglie's hypothesis. Heisenberg's uncertainty principle. #### S1-P-2: Gaseous State 5 h Deviation of real gases from ideal behavior. van der Waals equation of state. Critical phenomenon. PV isotherms of real gases, continuity of state. Andrew's isotherms of CO2. The van der Waal's equation and critical state. Derivation of relationship between critical constants and van der Waal's constants. The law of corresponding states, reduced equation of states. Joule Thomson effect and inversion temperature of a gas. Liquifaction of gases: i) Linde's method based on Joule Thomson effect ii) Claude's method based on adiabatic expansion of a gas. # S1-P-3: Liquid State and Solutions 4h Liquid State Intermolecular forces, structure of liquids (qualitative description). Structural differences between solids, liquids and gases. Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only). #### **Solutions** Liquid - liquid mixtures, ideal liquid mixtures, Raoult's and Henry's laws. Non ideal systems. Azeotropes: HCl-H2O and C2H5OH - H2O systems. Fractional distillation. Partially miscible liquids: Phenol - Water, Trimethyl amine - Water and Nicotine - Water systems. gffether goler 26/06/19 26/06/19 # S2-O-2: Hydroxy compounds and ethers Alcohols: Preaparation: 1°, 2° and 3° alcohols using Griganard reagent, Reduction of Carbonyl compounds, carboxylic acids and esters. Physical properties: H-bonding, Boiling point and Solubility. Reactions with Sodium, HX/ZnCl₂ (Lucas reagent), esterification, oxidation with PCC, alk. KMnO₄, acidic dichromates, conc. HNO₃ and Oppenauer oxidation (Mechanism). Phenols: Preapartion: (i) from diazonium salts of anilines, (ii) from benzene sulphonic acids and (iii) Cumene hydroperoxide. Properties: Acidic nature, formation of phenoxide and reaction with R-X, electrophilic substitution; halogenations, Riemer Tiemann reaction (Mechanism), Kolbe reaction (Mechanism), Gattermann-Koch reaction, Azo-coupling reaction, Schotton-Boumann raction, Houben-Hoesch condensation, . Ethers: Nomenclature, preparation by (a) Williamson's synthesis (b) from alkenes by the action of conc. H₂SO₄. Physical properties - Absence of Hydrogen bonding, insoluble in water, low boiling point. Chemical properties - inert nature, action of conc. H₂SO₄ and HI. # S2-O-3 Carbonyl compounds 5h Preparation of aldehydes & ketones from acid chloride, 1,3-dithianes, nitriles and from carboxylic acids. Special methods of preparing aromatic aldehydes and ketones by (a) Oxidation of arenes (b) Hydrolysis of benzal halides Physical properties - absence of Hydrogen bonding. Reactivity of the carbonyl groups in aldehydes and ketones. Chemical reactivity: Addition of (a) NaHSO₃ (b) HCN (c) RMgX (d) NH₃ (e) RNH₂ (f) NH₂OH (g) PhNHNH₂ (h) 2,4-DNP (Schiff bases). Addition of H2O to form hydrate, chloral hydrate (stable), addition of alcohols - hemi acetal and acetal formation. Cannizaro reaction. Oxidation reactions - KMnO4 oxidation and auto oxidation, reduction - catalytic hydrogenation, mechanism of Clemmenson's reduction, Wolfkishner reduction, Meerwein Pondoff Verly reduction. Reduction with LAH, NaBH₄. # Unit - III (Physical Chemistry) 15h(1 hr/week) # S2-P-1: Electrochemistry 15 h Electrical transport - conduction in metals and in electrolyte conductance and equivalent conductance, measurement of equivalent conductance, variation of specific and equivalent conductance with dilution. Migration of ions and Kholrausch's law, Arrhenius theory of electrolyte dissociation and its limitations, weak and strong electrolytes, Ostwald's dilution law - its uses and limitations. Debye-Huckel-Onsagar's equation for strong electrolytes (elementary treatment only). Transport number, definition and determination by Hittorf's method for attackable electrodes. Applications of conductivity measurements: Determination of degree of dissociation, determination of Ka of acids, determination of solubility product of a sparingly soluble salt, conductometric titrations. Electrolytic and Galvanic cells - reversible and irreversible cells, conventional representation of electrochemical cells. Electro motive force (EMF) of a cell and its measurement. Computation of EMF. Types of reversible electrodes- the gas electrode, metal-metal ion, metal-insoluble 26/6/19 190 1 76/6 salt and redox electrodes. Electrode reactions, Nernst equation, cell EMF and Single electrode potential, Standard Hydrogen electrode - reference electrodes (calomel electrode) - standard electrode potential, sign conventions, electrochemical series and its significance. Applications of EMF measurements. Calculation of thermodynamic quantities of cell reactions (Gibbs free energy G, Helmholtz free energy and Equilibrium constant K). Determination of pH using hydrogen electrode, glass electrode and quinhydrone electrode. Solubility product of AgCl. Potentiometric titrations. ## Unit – IV (General Chemistry) 15 h (1 hr/week) S2-G-1: Theory of Quantitative Analysis 6 hours Volumetric Analysis: Introduction, standard solutions, indicators, end point, titration curves, Types of titrations: i) neutralization titration- principle, theory of acid base indicators, titration curves and selection of indicators- strong acid - strong base, strong acid -weak base, weak acidstrong base
and weak acid -weak base. Theory of redox titrations - internal(KMnO4) and external indicators - use of diphenylamine and ferroin indicators. Theory of complexometric titrations - use of EBT, Murexide and Fast sulphone black indicators. Role of pH in complexometric titrations. Precipitation titrations - theory of adsorption indicators. Gravimetric analysis- Introduction, nucleation, precipitation, growth of precipitate, filtration and washing, drying and incineration of precipitate, coprecipitation and post precipitation. Determination of Ni² #### S2-G-2: Stereoisomerism 5h Optical activity: Definition, wave nature of light, plane polarised light, optical rotation and specific rotation, chiral centers. Chiral molecules: definition and criteria - absence of plane, center and S_n axis of symmetry - asymmetric and dissymmetric molecules. Examples of asymmetric molecules (Glyceraldehyde, Lactic acid, Alanine) and disymmetric molecules (trans-1,2-dichlorocyclopropane). Molecules with constitutionally symmetrical chiral carbons (Tartaric acid) Molecules with constitutionally unsymmetrical chiral carbons (2,3dibromopentane). D, L configuration - examples. R, S - configuration: Cahn-Ingold-Prelog rules, examples for asymmetric and disymmetric molecules. # S2-G-3: Dilute Solutions & Colligative Properties 4 h Dilute Solutions, Colligative Properties, Raoult's law, relative lowering of vapour pressure, molecular weight determination. Osmosis - laws of osmotic pressure, its measurement, determination of molecular weight from osmotic pressure. Elevation of boiling point and depression of freezing point. Derivation of relation between molecular weight and elevation in boiling point and depression in freezing point. Definition of the series th #### References General reference: B.Sc I Year Chemistry: Semester II, Telugu Academy publication, Hyd Unit I - 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996. - 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. - 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers 2001. - 4. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press1989. - 5. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press 1999. - 6. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th Edn. - 7. Textbook of inorganic chemistry by R Gopalan. #### Unit II - 1. Organic Chemistry by Morrison and Boyd. - 2. Organic Chemistry by Graham Solomons. - 3. Organic Chemistry by Bruice Yuranis Powla. - 4. Organic Chemistry by L. G. Wade Jr. - 5. Organic Chemistry by M. Jones, Jr - 6. Organic Chemistry by John McMurry. - 7. Organic Chemistry by Soni. - 8. General Organic chemistry by Sachin Kumar Ghosh. - 9. Organic Chemistry by C N pillai #### **Unit III** - 1. Physical chemistry by P W Atkins - 2. Principles of physical chemistry by Prutton and Marron. - 3. Text Book of Physical Chemistry by Soni and Dharmahara. - 4. Text Book of Physical Chemistry by Puri and Sharma - 5. Text Book of Physical Chemistry by K. L. Kapoor - 6. Physical Chemistry through problems by S.K. Dogra. - 7. Elements of Physical Chemistry by Lewis and Glasstone. - 8. Material science by Kakani & Kakani #### **Unit IV** - 1. Vogel's Text Book of Quantitative Analysis by G.H.Jeffery, J.Bassett, J.Mendham and R.C. Denney 5th edn Addison Wesley Longman Inc. 1999. - 2. Quantitative Analysis by Day and Underwood Prentice Hall (India) VI Edn.. - 3. Nano: The Essentials by T. Pradeep, McGraw-Hill Education. - 4. Chemistry of nanomaterials: Synthesis, Properties and applications by CNR Rao et.al. - 5. Nanostructured Materials and Nanotechnology, edited by Hari Singh Nalwa, Academic Press - 6. Practical chemistry by V K Ahluwalia, Sunitha Dhingra and AdarshGulati. #### **Laboratory Course** 45hrs (3 h / week) Paper II- Quantitative Analysis #### Acid - Base titrations - 1. Estimation of Carbonate in Washing Soda. - 2. Estimation of Bicarbonate in Baking Soda. - 3. Estimation of Carbonate and Bicarbonate in the Mixture. 2 blod 19 For 26 15 26/6/19 26/6/19 JAN! #### KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2019-2022) # B.Sc. CHEMISTRY II Year SEMESTER – III #### Paper-III Chemistry - III ## Unit-I (Inorganic Chemistry) 15 h (1 hr/week) S3-I-1: Chemistry of f-block elements: 5 h Chemistry of Lanthanides: Position in periodic table, Electronic structure, oxidation state, ionic and atomic radii- lanthanide contraction- cause and consequences, anomalous behavior of post lanthanides-complexation- type of donor ligands preferred. Magnetic properties-paramagnetism. Colour and spectra, f-f transitions -occurrence and separation- ion exchange method, solvent extraction. Chemistry of actinides- general features – electronic configuration, oxidation state, actinide contraction, colour and complex formation. Comparison with lanthanides. S3-I-2: Coordination Compounds-I 6 h Simple inorganic molecules and coordination complexes. Nomenclature – IUPAC rules, 1. Coordination number, coordination geometries of metal ions, types of ligands. 2.Brief review of Werner's theory, Sidgwick's electronic interpretation and EAN rule and their limitations. (Valence bond theory (VBT) – postulates and application to (a) tetrahedral complexes [Ni(NH₃)₄]²⁺, [NiCl₄]²⁻ and [Ni(CO)₄] (b) Square planar complexes [Ni(CN)₄]²⁻, [Cu(NH₃)₄]²⁺, [PtCl₄]²⁻ (c) Octahedral complexes [Fe(CN)₆]⁴⁻, [Fe(CN)₆]³⁻, [FeF₆]⁴⁻, [Co(NH₃)₆]³⁺, [CoF₆]³⁻ Limitations of VBT. 3. Isomerism in coordination compounds, stereo isomerism – (a)geometrical isomerism in (i) square planar metal complexes of the type[MA₂B₂], [MA₂BC], [M(AB)₂], [MABCD]. (ii) Octahedral metal complexes of the type [MA₄B₂], [M(AA)₂B₂], [MA₃B₃] using suitable examples, (b) Optical isomerism in (i). tetrahedral complexes [MABCD], (ii). Octahedral complexes [M(AA)₂B₂], [M(AA)₃] using suitable examples. Structural isomerism: ionization, linkage, coordination ligand isomerism using suitable examples. Free C M. o harring Jeffettin 01/09/2020 S3-I-3: Metal carbonyls and Organometallic Chemistry Metal carbonyls: Preparation and properties of Ni(CO)4. Structural features of Ni(CO)4, Fe(CO)₅, Fe₂(CO)₉, Fe₃(CO)₁₂ and Cr(CO)₆-18 valence electron rule. Definition, nomenclature and classification of organometallic compounds. Methods of preparation, properties and applications of alkyl and aryl compounds of Li, Mg & Al. # Unit - II (Organic Chemistry) 15h(1 hr/week) ## S3-O-1: Carboxylic acids and derivatives 5 h Preparation: a) Hydrolysis of Nitriles, amides and esters. b) Carbonation of Grignard reagents. Special methods of preparation of Aromatic Acids - Oxidation of Arenes. Physical propertieshydrogen bonding, dimeric association,. Chemical properties - Reactions involving H, OH and COOH groups -salt formation, anhydride formation, Acid halide formation, Esterification (mechanism) & Amide formation. Reduction of acid to the corresponding primary alcohol - via ester or acid chloride. Degradation of carboxylic acids by Huns Diecker reaction, Schmidt reaction (Decarboxylation). Arndt - Eistert synthesis, Halogenation by Hell - Volhard -Zelensky reaction. Carboxylic acid Derivatives - Hydrolysis nand Amonolysis of acid halides, Acid anhydrides and esters (mechanism of ester hydrolysis by base and acid). Hydrolysis and dehydration of amides. #### S3-O-2: Nitrohydrocarbons 3 h Preparation of Nitroalkanes. Reactivity - halogenation, reaction with HNO2 (Nitrous acid), Nef reaction, reduction. Aromatic Nitrohydrocarbons: Preparation of Nitrobenzene by Nitration. Physical properties, chemical reactivity -Reduction of Nitrobenzenes in different media. # S3-O-3: Amines, Cyanides and Isocyanides 7 h classification into 1°, 2°, 3° Amines and Quarternary ammonium compounds. Preparative methods - Ammonolysis of alkyl halides, Gabriel synthesis, Hoffman's bromamide reaction (mechanism). Reduction of Amides and Schmidt reaction. Physical properties. Use of amine salts as phase transfer catalysts. Chemical Properties: a) Alkylation b) Acylation c) Carbylamine reaction d) Hinsberg separation. Reaction with Nitrous acid of 1°, 2°, 3° (Aliphatic and aromatic amines). Electophilic substitutions of Aromatic amines - Bromination and Nitration, oxidation of aryl and 3° Amines, diazotisation. Diazonium salts: Preparation with mechanism. Synthetic importance - a) Replacement of diazonium group by - OH, X (Cl)-Sandmeyer and Gatterman reaction, by fluorine (Schiemann's reaction), by iodine, CN, NO2, H and aryl groups. Coupling Reaction of diazonium salts. i) with phenols ii) with anilines. Reduction to phenyl hydrazines. Cyanides and isocyanides: Structure. Preparation of cyanides from a) Alkyl halides b) from amides c) from aldoximes. Preparation of isocyanides from Alkyl halides and Amines. Properties of cyanides and isocyanides, a) hydrolysis b) addition of Grignard reagent iii) # Unit III (Physical Chemistry) 15 h (1 hr/week) S3-P-1:Thermodynamics -I A brief review of - Energy, work and heat units, mechanical equivalent of heat, definition of system, surroundings. First law of thermodynamics statement- various forms mathematical expression. Thermodynamic quantities- extensive properties and intensive properties, state function and path functions. Energy as a state function and exact differential. Work of expansion and heat absorbed as path function. Expression for work of expansion, sign convention problems on first law. Heat changes at constant pressure and heat changes at constant volume. Enthalpy. Heat capacities at constant pressure and constant volume. Derivation of Cp-Cv = R. Isothermal adiabatic processes. Reversible and irreversible processes. Reversible change and maximum work. Derivation of expression for maximum work for isothermal reversible process. Problems. Internal energy of an ideal gas. Joules experiment. Joule-Thompson coefficient. Adiabatic changes in ideal gas,
derivation of equation, PV7= constant. P-V curves for isothermal and adiabatic processes. Heat of a reaction at constant volume and at constant pressure, relation between ΔH and ΔV . Variation of heat of reaction with temperature. Kirchhoff's equation and problems. Limitations of first law and need for second law. Statement of second law of thermodynamics. Cyclic process. Heat engine, Carnot's theorem, Carnot's cycle. Derivation of efficiency of heat engine. Problems. Thermodynamic scale of temperature. S3-P-2: Thermodynamics-II 5 h Entropy: Definition from Carnot's cycle. Entropy as a state function. Entropy as a measure of disorder. Sign of entropy change for spontaneous and non-spontaneous processes &equilibrium processes. Entropy changes in i). Reversible isothermal process, ii). Reversible adiabatic process, iii). Phase change, iv). Reversible change of state of an ideal gas. Problems. Entropy of mixing of ideal gases. Free energy Gibb's function (G) and Helmholtz's function (A) as thermodynamic quantities. Concept of maximum work and network ΔG as Criteria for spontaneity. Derivation of equation $\Delta G = \Delta H - T\Delta S$. Significance of the equation. Gibbs equations and Maxwell relations. Variation of G with P, V and T. # Unit - IV (General Chemistry) 15 h (1 hr/week) S3-G-1 Evaluation of analytical data Significant figures, accuracy and precision. Errors-classification of errors- determinate and indeterminate errors, absolute and relative errors. Problems based on mean, median, range, standard deviation S3-G-2: Carbanions-I 5 h Introduction, acidic nature of a-hydrogens and tautomerism in carbonyl compounds, nitro hydrocarbons, ethyl acetoacetate, diethyl malonate. Terminal alkynes. Stabilty of carbanions Reactions: Aldol reaction, Perkin reaction, Benzoin condensation, haloform reaction, conversion of smaller alkynes to higher alkynes. S3-G-3: Phase Rule Statement and meaning of the terms - Phase, Component and Degrees of freedom, Gibb's Phase rule, phase equilibria of one component system - water system. Phase equilibria of twocomponent system - Solid-Liquid equilibria, simple eutectic -Pb-Ag system, desilverisation of lead. Solid solutions - compound with congruent melting point - Mg-Zn system and incongruent melting point - NaCl-H2O system. References General reference: B.Sc II Year Chemistry: Semester III, Telugu Academy publication, Hyd Unit- I 1. Analytical chemistry by G. L. David Krupadanam, D. Vijaya Prasad, K. Varaprasada Rao, K.L.N. Reddy and C. Sudhakar - 2. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications(1996). - 3. Concise Inorganic Chemistry by J.D. Lee 3rd edn Van Nostrand Reinhold Company(1977) - 4. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001). - 5. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006) - 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press(1989). - 7. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press (1999). - 8. Textbook of Inorganic Chemistry by R Gopalan(Universities Press(2012) - 9. College Practical chemistry by V K Ahluwalia, Sunitha Dhingra and Adarsh Gulati Universities Press (India) Limited(2012) Unit- II - 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninth edition (2012) - 2. General Organic chemistry by Sachin Kumar Ghosh. New Age Publishers Pvt Ltd (2008). - 3. Text book of organic chemistry by Morrison and Boyd. Person(2009) - 4. Text book of organic chemistry by Graham Solomons. Wiley(2015) - 5. Text book of organic chemistry by Bruice Yuranis Powla. (2012) - 6. Text book of organic chemistry by C N pillai CRC Press (2012) - 7. Organic Chemistry by L. G. Wade Jr. - 8. Organic Chemistry by M. Jones, Jr - 9. Organic Chemistry by John McMurry. - 1. Principles of physical chemistry by Prutton and Marron. The MacmillanCompany; 4th Edn.(1970) - 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand and Sons.(2011) - 3. Text Book of Physical Chemistry by Puri and Sharma. S. Nagin chand and Co.(2017) - 4. Text Book of Physical Chemistry by K. L. Kapoor. (2012) - 5. Colloidal and surface chemistry, M. Satake, Y. Hayashi, Y.Mido, S.A.Iqbal and - 6. M.S.sethi, Discovery Publishing Pvt.Ltd (2014) - 7. Material science by Kakani & Kakani, New Age International (2016) - 8. Physical Chemistry by Ira Levine (Author) McGraw-Hill Education; 6 edition (May 9, 2008) Unit IV - 1. Text book of organic chemistry by Morrison and Boyd, Person(2009) 2. Text book of organic chemistry by Graham solomons, Wiley(2015) 3. Text book of organic chemistry by Sony, Sultan Chand & Sons; 29th edition (2012) 4. Text book of organic chemistry by Bruice yuranis Powla, (2012) 5. General Organic chemistry by Sachin kumar Ghosh, New Age Publishers Pvt Ltd (2008) #### **Laboratory Course** #### Paper III (Organic Synthesis) 45 h (3h/week) # 1. Synthesis of Organic compounds: Acetylation: Acetylation of salicylic acid, Benzoylation of Aniline. Aromatic electrophilic substitution: Nitration: Preparation of nitro benzene and m-dinitro benzene. Halogenation: Preparation of p-bromo acetanilide, Preparation of 2,4,6-tribromo phenol Oxidation: Preparation of benzoic acid from benzyl chloride. Esterification: Preparation of n-butyl acetate from acetic acid. Methylation: Preparation of - naphthyl methyl ether. Condensation: Preparation of benzilidine aniline and Benzaldehyde and aniline. Diazotisation: Azocoupling of β-Naphthol. 2. Microwave assisted synthesis of Asprin - DEMO (demonstration only) 6/109/2020 Bul fffettu 01/09/2020 # B.Sc. II yr CHEMISTRY SEMESTER WISE SYLLABUS SEMESTER IV Paper-IV Chemistry - IV # Unit-I (Inorganic Chemistry) S4-I-1: Coordination Compounds -II 15h (1 h/week) 11 Crystal field theory (CFT)- Postulates of CFT, splitting patterns of d-orbitals in ctahedral, tetrahedral, square planer with suitable examples. Crystalfield stabilization energies and its calculations for various dn configurations in octahedral complexes. High Spin Low Spin complexes. Colour and Magnetic properties of transition metal complexes. Calculations of magnetic moments spin only formula. Detection of complex formation - basic principles of various methods- change in chemical properties, solubility, colour, pH, conductivity, magnetic susceptibility. Hard and soft acids bases (HSAB) - Classification, Pearson's concept of hardness and softness, application of HSAB principles - Stability of compounds / complexes, predicting the feasibility of reaction. Thermodynamic and kinetic stability of transition of metal complexes. Stability of metal complexes -stepwise and overall stability constant and their relationship and chelate effect determination of composition of complex by Job's method and mole ratio method. Applications of coordination compounds: Applications of coordination compounds a) in quantitative and qualitative analysis with suitable examples b) in medicine for removal of toxic metal ions and cancer therapy c) in industry as catalysts polymerization – Ziegler Natta catalyst d) water softening. ## S4-I-2:Bioinorganic Chemistry 4 h Essential elements, biological significance of Na, K, Mg, Ca, Fe, Co, Ni, Cu, Zn and chloride (Cl-). Toxic metal ions As, Hg & Pb Oxygen transport and storage – structure of hemoglobin, binding and transport of oxygen. Fixation of CO2 in photosynthesis- overview of light and dark reactions in photosynthesis. Structure of chlorophyll and coordination of magnesium. Electron transport in light reactions from water to NADP+ (Z – scheme). #### Semester-IV Unit - II (Organic Chemistry) S4-O-1: Carbohydrates 15h(1 hr/week) 6 h Introduction: Classification and nomenclature. Monosaccharides: All discussion to be confined to (+) glucose as an example of aldo hexoses and (-) fructose as example of ketohexoses. Chemical properties and structural elucidation: Evidences for straight chain pentahydroxy aldehyde structure. Number of optically active, isomers possible for the structure, configuration ollod myo Qu. Window 01/00/2020 JH- ltm 01/09/2020 of glucose based on D-glyceraldehyde as primary standard (No proof for configuration is required). Evidence for cyclic structure of glucose (Pyranose structure, anomeric Carbon and anomers). Proof for the ring size (methylation, hydrolysis and oxidation reactions). (Haworth formula and chair conformational formula). Structure of fructose: Evidence of 2 – ketohexose structure. Same osazone formation from glucose and fructose, Hydrogen bonding in osazones, cyclic structure for fructose (Furanose structure, Haworth formula). Inter Conversion of Monosaccharides: : Arabinose to D-glucose, D- mannose (kiliani – Fischer method). Epimers, Epimerisation- Lobry de bruyn van Ekenstein rearrangement. D-glucose to D-arabinose by Ruff's degradation. Aldohexose(+) (glucose) to ketohexose (-) (fructose) and Ketohexose(Fructose) to aldohexose (Glucose). #### S4-O-2: Amino acids and proteins 5 h Classification. Methods of synthesis: General methods of synthesis of alpha amino acids (specific examples – Glycine, Alanine, Valine and Leucine) by following methods: a) From halogenated Carboxylic acid b)Malonic ester synthesis c) strecker's synthesis. Physical properties: Optical activity of naturally occurring amino acids. Zwitter ion structure – salt like character, definition of isoelectric point. Chemical properties: General reactions due to amino and carboxyl groups – Lactams from gamma and delta amino acids by heating peptide bond (amide linkage). Structure and nomenclature of peptides. Primary structure of proteins, di peptide synthesis #### S4-O-3: Heterocyclic Compounds 4 h Introduction and definition: 5 membered ring compounds with one hetero atom Ex. Furan. Thiophene and pyrrole. Importance of ring systems -Numbering. Aromatic character Resonance structures: Explanation of feebly acidic
character of pyrrole, electrophillic substitution, Halogenation, Nitration and Sulphonation. Reactivity of furan as 1,3-diene, Diels Alder reactions (one example). Sulphonation of thiophene purification of Benzene obtained from coal tar). Preparation of furan, Pyrrole and thiophene Paul-Knorr synthesis. Structure of pyridine, Basicity – Aromaticity – Comparison with pyrrole – preparation by Hantsch method and properties – Reactivity towards Nucleophilic substitution reaction – chichibabin reaction. # Unit III (Physical Chemistry) 15h (1 hr/week) #### S4-P-1: Chemical Kinetics 11 h Introduction to chemical kinetics, rate of reaction, variation of concentration with time, rate laws and rate constant. Specific reaction rate. Factors influencing reaction rates: effect of concentration of reactants, effect of temperature, effect of pressure, effect of reaction medium, effect of radiation, effect of catalyst with simple examples. Order of a reaction. First order reaction, derivation of equation for rate constant. Characteristics of first order reaction. Units for rate constant. Half-life period, graph of first order reaction, Examples- Decomposition of H₂O₂ and decomposition of oxalic acid, Problems. Pseudo first order reaction, Hydrolysis of methyl acetate, inversion of cane sugar, problems. Second order reaction, derivation of expression for second order rate constant, examples- ollogtroro M. Dufun | 69/2020 Jesten 01/09/2020 Saponification of ester, 2O₃→ 3O₂, C₂H₄+H₂→ C₂H₆. Characteristics of second order reaction, units for rate constants, half- life period and second order plots. Problems 4 h S4-P-2: Photochemistry Introduction to photochemical reactions, Difference between thermal and photochemical reactions, Laws of photo chemistry- Grotthus Draper law, Stark-Einstein's Law of photochemical equivalence. Quantum yield. Examples of photo chemical reactions with different quantum yields. Photo chemical combinations of H2-Cl2 and H2-Br2 reactions, reasons for the high and low quantum yield. Problems based on quantum efficiency. Consequences of light absorption. Singlet and triplet states. Jablonski diagram. Explanation of internal conversion, inter- system crossing, phosphorescence, fluorescence. Unit III (General Chemistry) 15h (1 hr/week) S4-G-1: Theories of bonding in metals Valence bond theory, Explanation of metallic properties and its limitations, Free electron theory, thermal and electrical conductivity of metals, limitations, Band theory, formation of bands, explanation of conductors, semiconductors n-type and p-type, extrinsic & intrinsic semiconductors, and insulators. #### S4-G-2: Carbanions-II 5 h Mannich reaction, Michael addition and Knoevengeal condensation Synthetic applications of Acid hydrolysis and ketonic hydrolysis: Preparation of ketones, Aceto acetic ester. monocarboxylic acids and dicarboxylic acids Malonic ester- synthetic applications. Preparation of (i) substituted mono carboxylic acids and (ii) substituted dicarboxylic acids. S4-G-3: Colloids & Surface Chemistry 6 h Definition of colloids. Classification of colloids. Solids in liquids (sols): preparations and properties - Kinetic, Optical and Electrical stability of colloids. Protective action. Hardy-Schultz law, Gold number. Liquids in liquids (emulsions): Types of emulsions, preparation and emulsifier. Liquids in solids(gels): Classification, preparations and properties, General applications of colloids. Adsorption: Types of adsorption. Factors influencing adsorption. Freundlich adsorption isotherm. Langmuir theory of unilayer adsorption isotherm. Applications. #### References General reference: B.Sc II Year Chemistry: Semester IV, Telugu Academy publication, Hyd Unit- I - 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications (1996). - 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. Van Nostrand ReinholdCompany(1977) - 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001). - 4. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006) - 5. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press(1989). - 6. Inorganic Chemistry by Shriver and Atkins 3rd edn Oxford Press (1999). - 7. Textbook of Inorganic Chemistry by R Gopalan, Universities Press,(2012) Unit- II - 1. Text book of organic chemistry by Soni. Sultan Chand & Sons; Twenty Ninthedition (2012) - 2. General Organic chemistry by Sachin Kumar Ghosh. New Age Publishers Pvt Ltd (2008) - 3. Text book of organic chemistry by Morrison and Boyd. Person(2009) - 4. Text book of organic chemistry by Graham Solomons. Wiley(2015) - 5. Text book of organic chemistry by Bruice Yuranis Powla. (2012) - 6. Text book of organic chemistry by C N pillai CRC Press (2012) - 8. Organic Chemistry by L. G. Wade Jr. - 9. Organic Chemistry by M. Jones, Jr - 10. Organic Chemistry by John McMurry. - 1. Principles of physical chemistry by Prutton and Marron. The MacmillanCompany; 4th edn. - 2. Text Book of Physical Chemistry by Soni and Dharmahara. Sulthan Chand &sons.(2011) - 3. Text Book of Physical Chemistry by Puri and Sharma. S. Nagin chand and Co.(2017) - 4. Text Book of Physical Chemistry by K. L. Kapoor. (2012) - 5. Physical Chemistry through problems by S.K. Dogra. (2015) - 6. Text Book of Physical Chemistry by R.P. Verma. - 7. Elements of Physical Chemistry by Lewis Glasstone. Macmillan (1966) - 8. Industrial Electrochemistry, D. Pletcher, Chapman & Hall, London, 1990 - 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications (1996). - 2. Concise Inorganic Chemistry by J.D. Lee 3rd edn. Van Nostrand Reinhold Company (1977) - 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L. Gaus 3rd edn Wiley Publishers (2001). - 4. Inorganic Chemistry Principles of structure and reactivity by James E. Huhey, E.A. Keiter and R.L. Keiter 4th edn. (2006) - 5. Text book of organic chemistry by Morrison and Boyd, Person (2009) - 6. Text book of organic chemistry by Graham solomons, Wiley (2015) - 7. Fundamentals of organic synthesis and retrosynthetic analysis by Ratna Kumar Kar, CBA,(2014) - 8. Organic synthesis by Dr. Jagadamba Singh and Dr. L.D.S. Yadav, Pragati Prakashan, 2010 - 7. Stereochemistry of organic compounds by D. Nasipuri, New Academic Science Limited, 2012 - 8. Organic chemistry by Clayden, Greeves, Warren and Wothers, Oxford University Press, 2001 - 9. Fundamentals of Asymmetric Synthesis by G. L. David Krupadanam, Universities, Press 2014 **Laboratory Course** Paper IV- Qualitative Analysis of Organic Compounds: 45hrs (3 h/week) Qualitative analysis: Identification of organic compounds through the functional group analysis ignition test, determination of melting points/boiling points, solubility test, functional group tests and preparation of suitable derivatives of the following: Carboxylic acids, phenols, amines, urea, thiourea, carbohydrates, aldehydes, ketones, amides, nitro hydrocarbons, ester and naphthalene. #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-V** #### **DSE-A:** Chemistry Paper-V (Spectroscopy & Chromatography) #### (04 credits) <u>60 Hrs (04 Hrs/week)</u> #### **UNIT-I: Molecular Spectroscopy (15 Hrs)** <u>S5-A-E-I</u>: Introduction to electromagnetic radiation, interaction of electromagnetic radiations with molecules, various types of molecular spectra. #### Rotational spectroscopy (Microwave spectroscopy) Rotational axis, moment of inertia, classification of molecules (based on moment of inertia), rotational energies, selection rules, determination of bond length of rigid diatomic molecules eg. HCl. #### Infra red spectroscopy Energy levels of simple harmonic oscillator, molecular vibration spectrum, selection rules. Determination of force constant (Problems). Qualitative relation of force constant to bond energies. Anharmonic motion of real molecules and energy levels. Modes of vibrations in polyatomic molecules. Characteristic absorption bands of various functional groups. Finger print nature of infrared spectrum #### Electronic spectroscopy Bonding and anti-bonding molecular orbitals, electronic energy levels of molecules (σ , π , n), types of electronic transitions: σ - σ *, n- σ *, n- π *, π - π * with suitable examples. Selection rules, Terminology of chromophore, auxochrome, bathochromic and hypsochromic shifts. Absorption of characteristics of chromophones: diene, enone and aromatic chromophores. Representation of UV-Visible spectra. General features of absorption-spectroscopy transmittance, absorbance, and molar absorptivity. Beer-Lambert's law and its limitations. #### UNIT-II: NMR & Mass Spectroscopy (15 Hrs) #### S5-A-E-II: Proton Magnetic Resonance Spectroscopy Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, factors affecting chemical shifts, NMR splitting of signals – spin-spin coupling, representation of proton NMR spectrum – Integrations. ¹H NMR spectrum of – ethyl bromide, acetaldehyde, 1, 1, 2- tribromo ethane, ethyl acetate and acetophenone. #### Mass Spectrometry Electron Impact Mass: Basic principles, Nitrogen rule, types of ions: Molecular ion, fragment ion and isotopic ions, representation of mass spectrum, types of peaks (molecular ion, fragment and isotopic ion peaks). Determination of molecular formula. Mass spectrum of ethyl chloride, ethyl bromide and acetophenone. #### **UNIT-III:** Separation techniques-I (15 Hrs) Rich JE <u>S5-A-E-III</u>: Solvent Extraction- Principle, Methods of extraction: Batch extraction, continuous extraction and counter current extraction. Application—Determination of Iron (III). **Chromatography:** Classification of chromatographic methods, principles of differential migration, adsorption phenomenon, nature of adsorbents, solvent systems. Page 2 of 6 Thin layer Chromatography (TLC): Advantages,
preparation of plates, solid phase and mobile phase used in TLC, eluotopic series, development of the chromatogram, Detection of the spots, factors effecting R_f values and applications of TLC. **Paper Chromatography:** Principle, choice of paper and solvent systems, development of chromatogram – ascending, descending, radial and two dimensional chromatography, detection of spots, and applications of paper chromatography. #### **UNIT-IV:** Separation techniques-II (15 Hrs) <u>S5-A-E-IV</u>: Column Chromatography- Principle, Types of stationary phases, Column packing – Wet packing technique, Dry packing technique. Selection criteria of mobile phase solvents for eluting polar, non-polar compounds and its applications. **Ion exchange chromatography**: Principle, cation and anion exchange resins, its application in separation of ions, de-ionized water. Gas Chromatography: Principle, theory and instrumentation (Block Diagram), Types of stationary phases and carrier gases (mobile phase), application of GC. **High performance liquid chromatography**: Principle, theory and instrumentation, stationary phases and mobile phases. Applications of HPLC, analysis of Paracetamol. #### Recommended Text Books and Reference Books: - 1. Fundamentals of Molecular Spectroscopy, C.N. Ban well & Mc Cash. - 2. Organic spectroscopy, William Kemp, Palgrave Macmillan; 2nd Revised edition. - 3. Spectroscopy, B K Sharma Krishna Prakashan Media, 1981. - 4. Elements of Organic spectroscopy, YR Sharma. - 5. Applications of Absorption spectroscopy of Organic compounds (English paper back, Dyer R.John) - 6. Organic chemistry, Morrison and Boyd, Pearson Publications. - 7. Introduction to Spectroscopy by Donald Pavia, Gary Lampman and George Kriz. Saunders College Division, 2001. - 8. Chemistry text book for B.Sc., published by Telugu academy, Govt. of Telangana. - 9. Analytical Chemistry by David Krupadanam, Universities Press (India) Limited. - 10. Principles of Instrumental Analysis, D.A.Skoog, F.J.Holler & T.A. Nieman, Cengage Learning India Ed. - 11. Fundamentals of Analytical Chemistry 6th Edn, D.A.Skoog, D.M. West, F.J.Holler, Saunders College Publishing, Fort worth (1992). - 12. Instrumental Methods of Analysis, 7th Ed. Willard, H.H., Merritt, L.L., Dean, J. & Settle, F.A. Wordsworth Publishing Co.Ltd., Belmont, California, USA, 1988. - 13. A Text Book of Quantitative Inorganic Analysis 7th Ed., Vogel, A.I. Prentice Hall. - 14. Analytical Chemistry 7 th Edition by Gary D.Christian (2004) - 15. Separation Methods, M.N Sastry, Himalaya Publication (2004) Fres John Page 3 of 6 #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-V** #### **DSE-B:** Chemistry Paper–V (Metallurgy, Dyes and Catalysis) #### (04 credits) 60 Hrs (04 Hrs/week) #### Unit I: General Principles of Metallurgy and Production of Non Ferrous Metals (15 Hrs) <u>S5-E-B-I</u>: Pyrometallurgy: Drying and calcination, roasting, smelting, products of smelting, Hydrometallurgy: Leaching methods, leaching agents, leaching of metals, oxides and sulphides. Separation of liquid and solid phases and processing of aqueous solutions Electrometallurgy: Electrolysis, Refining electrolysis, electrolysis from aqueous solutions, fused-salt electrolysis Refining processes: Chemical and physical refining processes **Production of selected non-ferrous metals (Copper, Nickel, Zinc):** Properties, raw materials, production (flow charts presentations and chemical reactions involved) and uses. #### Unit II: Natural and Synthetic Dyes (15 Hrs) <u>S5-E-B-II</u>: Definition and Classification of dyes - Natural dyes, Synthetic dyes: based on chemical constitution of dyes; Chemical nature of dyes; Application of dyes. Structures of Natural dyes: Indigo, Tyrian purple, Alizarine, Indigotin. Structures of Synthetic dyes: Nitro dyes, Nitroso dyes, Azo dyes (Mono azo dye, Bis azo dyes) Diaryl methane dyes, Triaryl methane dyes, Xanthenes dyes, Phenolphthalein, Fluoroseine, Acridine dyes. **Synthesis of dyes**: Mono azo dye, Bis azo dyes (Congo red), Auromine O, Malachite Green, Crystal Violet, Rhodamine B, Acridine Yellow, Indigotin. Binding of dyes to fabric. Applications of dyes. #### Unit III: Catalysis-I (15 Hrs) <u>S5-E-B-III</u>: Homogeneous and heterogeneous catalysis - Definition of a catalyst and catalysis. Comparison of homogeneous and heterogeneous catalysis with specific examples. General characteristics of catalytic reactions. Acid-base catalysis- Examples of acid and base catalysed reactions, hydrolysis of esters. Kinetics of acid catalysed reactions. Specific acid and general acid catalysis, Kinetics of base catalysed reactions. Specific base and general base catalysis. Examples- Aldol condensation and decomposition of nitramide, base catalysed conversion of acetone to di acetone alcohol, Mutarotation of Glucose. Effect of pH on reaction rate of acid and base catalysed reactions. **Phase transfer catalysis:** Principle of phase transfer catalysis, classification of phase transfer catalysts. Factors influencing the rate of PTC reactions. #### Unit IV: Catalysis-II (15 Hrs) <u>S5-E-B-IV</u>: Enzyme catalysis- Characteristics of enzyme catalysis, Examples: (i) Invertase in inversion of cane sugar (ii) Maltase in conversion of maltose to glucose (iii) Urease in decomposition of urea (iv) Zymase in conversion of glucose to ethanol (v) working of carbonic anhydrase and (vi) Mechanism of oxidation ethanol by alcohol dehydrogenase. Factors affecting enzyme catalysis. Effect of temperature, pH, concentration and effect of inhibitor on enzyme catalysed reactions, Catalytic efficiency. Fren Josh Page 4 of 6 Kinetics of enzyme catalysed reactions: Michaelis-Menton Equation. Mechanism of enzyme catalysed reactions. Significance of Michaelis constant (Km) and maximum velocity (Vmax), Lineweaver-Burk plot. Types of enzyme inhibitors. #### **Recommended Text Books and Reference Books:** - 1. Industrial Chemistry B.K.Sharma - 2. Engineering Chemistry, Jain and Jain - 3. Industrial Chemistry, E. Stocchi, Vol-I, Ellis Horwood Ltd. UK. - 4. Handbook of Industrial Chemistry, J. A. Kent: Riegel's, CBS Publishers, New Delhi. - 5. Theory of production of non-ferrous metals and alloys Study. Kateřina Skotnicová, Monika Losertová, Miroslav Kursa. - 6. The Chemistry of Synthetic Dyes, Volume 4, K. Venkataraman, Elsevier. - 7. Organic Chemistry Vol-I by I.L. Finar. - 8. Organic Chemistry by Jennice, Gorzinski Smith. - 9. Natural Dyes: Sources, Chemistry, Application and Sustainability Issues by Sujata Saxena and A. S. M. Raia. - 10. Physical Chemistry by Atkins and De Paula, 8 th Edn. - 11. Physical Chemistry by Puri, Sharma and Pattania, 2017. - 12. Kinetics and mechanism of chemical transformations by Rajarajm and Kuriacose, Published by Macmillan India Ltd. - 13. Text book of Physical Chemistry by K.L. Kapoor Macmillan, 1999. - 14. Catalysis by J.C. Kuriacose, Macmillan Publishers India Limited, 1980. - 15. Phase Transfer Catalysis, Fundamentals, Applications and Industrial perspectives, C.M.Stark, C.Liotta & M.Halpern, Academic Press. - 16. Phase Transfer Catalysis, E.V.Dehmlow & S.S. Dehmlow, Verlag Chemie, Weinheim. grer Jost. princles #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-V** #### LABORATORY COURSE #### Paper -V: Experiments in Physical Chemistry-I #### (01 Credit) 45 Hrs (03 Hrs/week) #### 1. Distribution law - a) Determination of molecular status and partition coefficient of benzoic acid in Toluene and water. - b) Determination of distribution coefficient of acetic acid between n-butanol and water. #### 2. Electrochemistry - a) Determination of cell constant of conductivity cell. - b) Verification of Ostwald's dilution law- Determination of dissociation constant (K_a) of acetic acid by conductivity measurements. #### 3. Colorimetry - a) Verification of Beer's Lamberts law for KMnO₄ - b) Determination of the concentration of the given KMnO₄ solution. #### 4. Adsorption a) Adsorption of acetic acid on animal charcoal- Verification of Freundlich adsorption isotherm. #### 5. Physical constants a) Surface tension and b) Viscosity of liquids. (Demonstration Experiment) #### Reference books: - Senior Practical Physical Chemistry, B. D Khosla, V. C. Garg, Adarsh Gulati Published by R. Chand & Co. - 2. Practical Physical Chemistry, B. Vishwanathan and P.S. Raghavan. Viva Books. - Practicals in Physical Chemistry by P.S. Sindhu ISBN-10: 1-4039-2916-5/1403929165 ISBN-13: 978-1-4039-2916-7/9781403929167. Fren Jook DV meddy #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-VI** #### **DSE-A:** Chemistry Paper–VI (Medicinal Chemistry) #### (04 credits) 60 Hrs (04 Hrs/week) #### **Unit- I: Introduction and Terminology (15 Hrs)** <u>S6-E-A-I</u>: Diseases: Common diseases, infective diseases—insect borne, air-borne, water-borne and hereditary diseases. **Terminology in Medicinal Chemistry**: Drug, Active Pharmaceutical Ingredient (ADI), Pharmaceuticals, Pharmacology, Pharmacophore, Pharmacodynamics, Pharmacokinetics, metabolites, anti metabolites and therapeutic index. **Drugs**: Nomenclature: Chemical name, Generic name and Trade names with examples; Classification: Classification based on structures and therapeutic activity with examples. **ADMET**: a) Absorption: Definition, absorption of drugs across the membrane – active and passive absorption, routes of administration of drugs. b) Distribution: definition and effect of plasma protein binding. c) Metabolism: definition, phase I and phase II reactions. d) Elimination: definition and renal elimination. Toxicity. #### **Unit-II: Enzymes and Receptors (15 Hrs)** <u>S6-E-A-II</u>: Enzymes: Introduction, Mechanism and factors affecting enzyme action, Specificity of enzyme action (including stereo specificity), Enzyme inhibitors and their importance. Types of inhibition - reversible, irreversible and their subtypes with examples. **Receptors:** Introduction, Drug action-receptor theory, Mechanism of drug action, concept of agonists and antagonists with examples.
Drug receptor interactions involved in drug receptor complex. Binding role of -OH group, -NH₂ group, quaternary ammonium salts and double bond. Structure – activity relationships of drug molecules, explanation with sulfonamides. #### Unit- III: Synthesis and Therapeutic Activity of Drugs (15 Hrs) **S6-E-A-III**: Introduction, synthesis and therapeutic activity of: **Chemotherapeutics:** Sulphanilamide, dapsone, Penicillin-G (semi synthesis), Chloroquin, Isoniazid, Cisplatin and AZT. **Drugs to treat metabolic disorders**: **Anti diabetic** - Tolbutamide; Anti-inflammatory – Ibuprofen; Cardiovascular- Glyceryl trinitrate; Antipyretic (paracetamol, aspirin) and Antacid- Omeprazole. Page 2 of 6 Freir In. Nomeday **Drugs acting on nervous system:** Anesthetics-definition, Classification-local and general. Volatile-Nitrous oxide, chloroform uses and disadvantages. Local anesthetics – benzocaine. #### Unit- IV: Molecular Messengers and Vitamins and Micronutrients (15 Hrs) <u>S6-E-A-IV</u>: Molecular Messengers: Introduction to hormones and neurotransmitters, Thyroid hormones, Antithyroid drug-Carbimazol. Adrenaline: Adrenergic drugs- salbutamol, atenelol. Serotonin: SSRIs- fluoxetine. Dopamine: Antiparkinson drug- Levodopa. **Vitamins and Micronutrients**: Introduction, Vitamin sources, Deficiency disorders and remedy of Vitamins A,B, C, D, E, K and micronutrients – Na, K, Ca, Cu, Zn and I. #### Recommended Text Books and Reference Books: - 1. Introduction to Medicinal Chemistry, G.L. Patrick, Oxford University Press, New York. 2013. - 2. Medicinal Chemistry, Thomas Nogrady, Oxford Univ. Press, New York.2005. - 3. Foye's Principles of Medicinal Chemistry, David William and Thomas Lemke, Lippincott Williams & Wilkins, 2008. - 4. Medicinal Chemistry, Ashutosh Kar, New Age International, 2005. - 5. Synthetic Drugs, O.D. Tyagi & M. Yadav, Anmol Publications, 1998. - 6. Medicinal Chemistry, Alka L. Gupta, Pragati Prakashan. gres mi 7. Drugs, G. L. David Krupadanam, D.Vijaya Prasad, K.Varaprasad Rao, K. L. N. Reddy, C. Sudhakar, Universities Press (India) Ltd. 2012. t Page 3 of 6 #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-VI** #### **DSE-B: Chemistry Paper-VI** (Agricultural & Fuel Chemistry) #### (04 credits) <u>60 Hrs (04 Hrs/week)</u> #### **Unit I: Pesticides (15 Hrs)** <u>S6-E-B-I</u>: **Introduction**, Definition, classification of pesticides based on use (target). Toxicity and chemical structure with examples. Adverse effects of pesticides and its impact on environmental pollution. Synthesis, manufacture and uses of representative pesticides: Organochlorines (Cypermethrin); Organophosphates (Parathion); Carbamates (carbaryl); Quinones (Chloranil), Anilides (Alachlor). Pesticide formulations: Dusts, Granules, Wettable powders, Emulsions and Aerosols. **Biopestcides:** Introduction: Potential pesticidal plants of India, Role of Neem in plant protection-constituents, Azadirachtin and its role in pest control, Structure and mode of action of Pyrethrins (pyrethrin-1) and Pyrethroids (permethrin) and nicotinoids (Imidacloprid). #### **Unit II: Fertilizers (15Hrs)** <u>S6-E-B-II</u>: **Introduction**: (need of fertilizers), functions of essential plant nutrients (N, P, K), Classification formula and uses of fertilizers: **Nitrogenous fertilizers**: Ammonium nitrate, Urea, Calcium Cyanamide, Calcium Ammonium Nitrate, Sodium Nitrate, Ammonium Chloride and their uses. **Phosphate fertilizers**: Normal super phosphate, Triple Super Phosphate, Ammonium Phosphate and their uses. Potassium fertilizers: Potassium chloride, potassium nitrate, potassium sulphate and uses. **Complex fertilizers:** Diaammonium Phosphate and mixed fertilizers their uses. Manufacture of urea and Super phosphate of lime and their reactions in the soil. **Biofertilizers:** Introduction, definition, classification, Rhizobium, Azatobactor, Azospirillium, Azolla, Blue Green Algae, Vermicomposting and uses. **Organic farming**: The principal methods, crop rotation, green manures and compost, biological pest control, and mechanical cultivation and uses. #### Unit III: Energy Sources and Coal (15Hrs) <u>S6-E-B-III</u>: Review of energy sources (renewable and non-renewable). Classification of fuels and their calorific value. J996: Page 4 of 6 **Coal**: Uses of coal (fuel and nonfuel) in various industries, its composition, carbonization of coal. Coal gas, producer gas and water gas—composition and uses. Fractionation of coal tar, uses of coal tar based chemicals, requisites of a good metallurgical coke, Coal gasification (Hydro gasification and Catalytic gasification), Coal liquefaction and Solvent Refining. ## Unit IV: Petroleum and its products, Petrochemicals and non petroleum fuels (15Hrs) #### <u>S6-E-B-IV</u>: Petroleum and its products **Petroleum:** Origin, Composition of crude petroleum and classification. Properties-flash point and its determination, Knocking and anti-knocking compounds; Octane number and Cetane number. Distillation of crude petroleum, Fractional Distillation - Principle and process, refining, fractions and uses. Cracking -Thermal and catalytic cracking, Reforming. **Petroleum products** – Petrol, Diesel, LPG, Kerosene, Tar and their applications. Petrochemicals-Vinyl acetate, Propylene oxide, Isoprene and their uses. **Lubricants:** Classification of lubricants- Solid, semi solid and liquids; Properties (viscosity, flash point, fire point, cloud point, pour point) and their determination. Functions of Lubricants, Mechanism of lubrication. **Non-Petroleum fuels:** Natural Gas- CNG, LNG, clean Fuels- H₂ gas, ethanol, Fuel from waste- bio gas, Fuel from bio mass-Bio ethanol, biodiesel, and Synthetic fuels- syngas based. #### **Recommended Text Books and Reference Books:** - 1. Chemistry of pesticides, N. N. Melnikov, Springer-Verlag- Technology & Engineering (2012). - 2. Pesticide Synthesis, Thomas A. Unger, Elsevier, (2000). - 3. Pesticides, R. Cremlyn, John Wiley, 1980. - 4. Manures and Fertilisers, K. Kolay, Published by Atlantic (2007). - 5. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meerut (1996). - 6. A Text Book of Engineering Chemistry Paperback-2017 by Shashi Chawla. - 7. Industrial Chemistry, Vol-I, Stocchi.E, Ellis Horwood Ltd. UK (1990). - 8. Jain, P.C. & Jain, M. Engineering Chemistry, Dhanpat Rai & Sons, Delhi. - 9. Engineering Chemistry by Shashi Chawla, Dhanpat Rai & Sons, Delhi. JOS! prineldy #### **B.Sc., III YEAR CHEMISTRY** #### **SEMESTER-VI** #### LABORATORY COURSE #### Paper -V: Experiments in Physical Chemistry-II #### (01 Credit) 45 Hrs (03 Hrs/week) #### 1. Kinetics - a) Determination of specific reaction rate of the hydrolysis of methyl acetate catalyzed by hydrogen ion at room temperature. - b) Determination rate of decomposition of hydrogen peroxide catalyzed by FeCl₃. #### 2. Electrochemistry #### A. Potentiometry: - a) Determination of redox potential of Fe^{2+/}Fe³⁺ by potentiometric titration of ferrous ammonium sulphate vs potassium dichromate. - b) Precipitation titration of KCl vs AgNO₃ –Determination of given concentration of silver nitrate. #### B. pH metry: - a) pH metric titration of strong acid (HCl) vs strong base- Determination of the concentration of given acid. - b) pH metric titration of strong acid (acetic acid) with strong base (NaOH)- Determination of acid dissociation constant (K_a) of weak acid. #### 3. Conductometry: a) Determination of overall order: Saponification of ethyl acetate with NaOH by conductance measurement #### Reference books: - 1. Senior practical physical chemistry, B.D.Khosla, V.C.Garg, Adarsh Guati. - 2. Advanced Practical Physical chemistry, J.B. Yadav. - 3. Practical Physical chemistry, B.Vishvanathan and P.S.Raghavan. - 4. Practical Physical chemistry, P.S. Sindhu. JON! Exer Numeraly