DEPARMENT OF BIOTECHNOLOGY KAKTIYA UNIVERSITY, WARANGAL

·

Courses offered by the Department:

- M.Sc.Biotechnology
- 5 Year Integrated M.Sc. Biotechnology
- Ph.D. Programme in Biotechnology

M.Sc.Biotechnology: Students are selected through entrance test (KUCET) conducted by Kakatiya University. Two categories of seats are available – Free and Self Finance.

NRI Students: NRI students can be admitted directly without any entrance test based on their basic qualification.

Year Integrated M.Sc. Biotechnology: This programme is sanctioned by Andhra Pradesh State Counsel of Higher Education (APSCHE), Government of Andhra Pradesh and it is introduced from the academic year(2008-2009) with an intake of 30 seats and the students are selected through entrance test (KUCET).

Ph.D. Programme in Biotechnology: Ph.D. Students are selected through eligibility test conducted by Kakatiya University

Course Objectives

- To Create Intelligent and Skilled Human Resource to Cope up with the Development of Science and Industry.
- To train students to understand about different biomolecules, their structure and function.
- To acquaint the students with the chemistry of biological systems and to unravel the chemistry of the living state.
- To Develop Student Force to enter into Modern Research and Technology.

The students are trained in the following areas:

- General Biology, Cell Biology and Microbiology
- Basic and Molecular Genetics
- Immunology
- Biochemistry
- Biophysical and Chemical Methods and Bioprocess Technology
- Cell and Tissue Culture Technology
- Molecular Biology and Recombinant-DNA Technology
- Microbial Biotechnology
- Environmental Biotechnology
- Basic and Advance- Plant, Agriculture, Animal and Medical Biotechnology
- Biostatistics and Computer Applications
- Bioinformatics

Outcomes:

M.Sc Biotechnology:

Programme outcome:

- ❖ M.Sc Biotechnology course is to produce competent skilled man power who can implement their knowledge in the various fields science such as agriculture, industry, healthcare and environment to provide sustainable solution that will benefit human being. Students will exhibit contemporary knowledge in Biotechnology and will be eligible for doing jobs in various sectors of pharmaceutical and biotechnological industry
- ❖ Students will be provided hands on learning into the functioning of the biotechnology industry. Students will have to undertake an Industry Project in their second year of the programme.

Programme Specific Outcomes:

- The course curriculum is designed to strengthen the fundamentals in basic subjects and provide hands on practice in all the disciplines of biotechnology.
- Fundamental multidisciplinary knowledge will enable students to design, conduct experiment, analyze and interpret data for investigating problems in Biotechnology and allied fields.
- ➤ The Programme inculcates critical thinking and analytical skills, which increases their marketability. Industrial project/Internships give a strong exposure to real time research problems in life science and enable the graduates to launch them in their workplace environment
- > Students can opt for higher studies for Ph.D. in India and Abroad. Students can appear for CSIR-NET, GATE, ICMR, DBT examination for getting fellowships for doing research. Students can become entrepreneur and can start consultancy in the field of life science. Several career opportunities are also available for biotechnology students in Abroad.
- > Students will gain in-depth knowledge in the domains of Cell biology, Microbiology, Biochemistry, Genetics, Molecular biology, Genetic engineering and Bioinformatics. Students will also obtain hands on training in laboratory techniques related to biophysics, clinical biochemistry, microbiology, molecular biology, bioinformatics, immunology, plant and animal tissue culture.
- ➤ This course will develop effective communication, managerial and other skills in students to carry out advanced projects and collaborations even across the disciplines.

Course Outcomes

Paper Code	Course/Paper Title	Course outcome
101	Biochemistry	Students will be imparted knowledge about structure and function of different biomolecules (proteins, lipids, nucleic acids, and carbohydrates). Understanding of carbohydrate, protein, lipid, purine and pyrimidine biosynthesis and metabolism.

102	Migrobiology and	This course will help students to ecquire stills and
102	Microbiology and Biodiversity	This course will help students to acquire skills and competency in microbiological laboratory practices applicable to microbiological research or clinical methods, including accurately reporting observations and analysis, applications of Microorganisms in various fields. To study various aspects of biodiversity. To understand global biodiversity (plant and animal) and the concept of Bioprospecting, biosafety, biopiracy and biodiversity conservation.
103	Cell Biology and Genetics	To gain the knowledge of living cells such as prokaryotic and eukaryotic cells. To understand the molecular aspects of of Cell Signaling, Protein sorting Cell Cycle and Cell Division Cell Death Pathways. To understand the basics of cancer biology. To understand basic principles and exceptions of Mendelian inheritance. To learn the concepts of Linkage, crossing over and recombination. To gain knowledge about the organelle inheritance. To make students understand the role of the X and Y chromosomes in determining sex and how they are inherited. To impart
104	Biophysical and Biochemical Techniques	knowledge about DNA damage and Repair mechanism. To understand the safety measures in laboratory, handling and care of instruments and demonstrate a broad understanding of life science technologies. To demonstrate ability to plan and execute experiments, and analyze and interpret outcomes. Demonstrate understanding of selected Basic Principles & Concepts about biological techniques like microscopy, centrifugation, electrophoresis, chromatography and basics of radioactivity.
201	Enzymology and Plant Biochemistry	To understand the Mechanisms of enzyme action and Enzymes kinetics To study the Regulation of enzyme activity mechanism of some important enzymes. To know the Photosynthetic pigments and photosynthesis in bacteria and higher plants. To study the CO ₂ fixation by C3, C4, and CAM pathways and photorespiration. Students will also be imparted knowledge about nitrogen fixation and <i>nif</i> and <i>nod</i> genes.
202	Immunology and Immunotechnology	To introduce the basic concepts of cells and organs of the immune system and immunity. To study the structure and function of antigen and antibodies. Study of rearrangement of Ig genes. To learn about Major Histocompatibility Complex, antigen processing and presentation, complement system and cytokines. To provide knowledge about Humoral and Cell Mediated Immune Response: B- cell and T – cell receptor complex. Cell mediated cytotoxicity: T cytotoxic cells, Natural Killer (NK) Cells, Antibody dependent cell cytotoxicity (ADCC). To give an overview of hypersensitivity and autoimmunity. Transplantation: Graft vs. host reaction and rejection; Immunization and

	T	
		Vaccines. To provide knowledge of antigen-anibody interaction and Immunodiagnostic techniques: RIA and ELISA.
203	Molecular Biology	To understand the concepts of Molecular Biology. To
		study the chemical & physical properties of nucleic acids.
		Learn experimental evidences for nucleic acid as carrier of
		genetic information. To understand DNA replication,
		transcription, translation in Prokaryotes and Eukaryotes.
		To study the basic features of genetic code. To understand
		the regulation of gene expression in Prokaryotes and
		Eukaryotes.
204	Biostatistics and	This course will help students' tools of biostatics in
	computer	interpretation of biological data. Students will be able to
	applications	characterize data and understand different sampling
	wh hardward and	methods. To understand the concept of mean, mode,
		median, range, mean deviation, standard deviation,
		standard error, correlation & regression, chi square test,
		t-test.
		Students will learn about Fundamentals of Computers and
		Applications of Computers in Biology
301	Plant Biotechnology	Develop skills for application of plant tissue culture
• • • • • • • • • • • • • • • • • • • •	Time Biotechnology	techniques. To get the knowledge about the genetic
		transformation and production of transgenic plants.
302	r DNA Technology	Learning outcomes of this course are technical know-how
002		on versatile techniques in recombinant DNA technology,
		application of genetic engineering techniques in basic and
		applied experimental biology and proficiency in designing
		and conducting experiments involving genetic
		manipulation.
		Development of an ability to design and conduct genetic
		engineering experiments, as well as to analyze and
		interpret data and construction of DNA and cDNA
		libraries.
		Development of research aptitude and technical skills to
		secure a job in genetic engineering labs. Understand
		genome complexity, genome organization and genome
		analysis. Learn Whole genome Sequencing, accessing
		whole genome sequence databases. Learn the procedures
		involved in PCR and southern hybridization, etc.
303	a). Microbial	The course will provide technical knowledge applications
Elective	Biotechnology	of industrial microorganisms. The course will also provide
		the technical knowledge of several industrial products
		such as amino acids, organic acids, industrial enzymes and
		beverages. To gain the knowledge about the role of
		microbes in food industry.
	b). Advanced	Students will be able to understand the mechanism of Site
	Biotechnology	specific recombination and Advances in transgenic
		strategies for gene inhibition.
		The course will provide technical knowledge and
		applications of ribozyme technology, gene silencing and RNAi technology, genome editing using CRISPR Cas

		Students will the knowledge shout best reserve
		Students will the knowledge about host parasite interaction and genome mapping such as Fluorescent in
		situ hybridization (FISH) and Sequence tagged site (STS)
304	a) Madiael	mapping,
	a). Medical	Development of solid foundation and requisite research
Elective	Biotechnology	aptitude for further higher studies on regenerative
		medicines. Become competent to secure a job in
		biopharmaceutical and biomedical industry.
		Students will be able to understand the classification of
		genetic diseases, disease diagnosis and drug delivery &
		designs This course will help the students to acquire skills and
		This course will help the students to acquire skills and
		competency in Prenatal diagnosis, gene therapy and
	1) N	Animal Cloning
	b). Nanotechnology	To know the preparation and characterization of
		appropriate nano materials with precision conceptualize
401	A • 14 1	the insertion of nano size in the relevant field of interest
401	Agricultural	Engineering plants for biotic stress like insect and fungal
	Biotechnology	diseases.
		Engineering plants for abiotic stress like drought and
		herbicide tolerance. Engineering plants for shelf life and
		nutritional quality. Gaining knowledge on biosafety, risk
		assessment and regulation of transgenic plants in India
		Understand the historical background, importance and
		levels of Biosafety at laboratory and industrial scale.
		Understanding of the relationship between society and
		science and the justification for biotechnological
402	Animal	manipulation of plants, animals, and microorganisms. To know the basics of animal cell culture and apply the
402	Biotechnology	knowledge in the relevant field of interest. Pursuing
	Diotechnology	research related to animal cell and tissue culture at
		national and international level.
		To contribute in industries related to animal cell culture as
		scientists
403	a). Environmental	Explain the importance of microbial diversity and of
Elective	Biotechnology	molecular approaches in environmental microbiology.
Lictive	Diotechnology	Describe existing and emerging technologies that are
		important in the area of environmental biotechnology;
		Describe biotechnological solutions to address
		environmental issues including pollution, mineral resource
		winning, renewable energy and water recycling.
		Learning outcome of Environment Biotechnology is to
		gain the knowledge of biodiversity, bioremediation,
		pollution.
	b). Bioprocess	Plan a research career or to work in the biotechnology
	Technology	industry with strong foundation about bioreactor design
	1 connoingy	and scale-up.
		Students will be able to explain the steps involved in the
		production of bioproducts and methods to improve
		modern biotechnology and can apply basic
		biotechnological principles, methods and models to solve
		oroccomological principles, memous and models to solve

		historius la signification
		biotechnological tasks.
		Graduates gain ability to investigate, design and conduct
		experiments, analyze and interpret data, and apply the
		laboratory skills to solve complex bioprocess engineering
		problems.
		Able to separate the molecules through chromatography
		and understand the complexity in scale up of unit
		operations.
		Able to choose the downstream steps within the
		constraints of biosafety and process economics
404	a). Bioinformatics	Students will be able to analyze, interpret and study
Elective		biological data (sequence, structure, etc) stored in various
		databases available on internet.
		Using existing software effectively to extract information
		from large databases and to use this information in
	1	computer modeling.
	b).Pharmaceutical	The course will provide technical knowledge of
	biotechnology	characterization and screening of pharmaceutically
		important plant secondary metabolites.
		Students will be able to understand the working and
		applications of biosensors in Pharmaceutical industries
		and also drug discovery, design and development
	Industrial Project	In this course, the student will undergo training in any
	industriar i roject	biotechnology industry/institute for 30-45 days during
		, , , , , , , , , , , , , , , , , , , ,
		summer vacation after first year This will not only
		enhance knowledge base of students but also provide them
		exposure as to how to conduct and carry out a research
		based task. Students will also learn how to compile and
		interpret results.

Ph.D. Programme in Biotechnology Programme outcome:

Students will be able to identify societal problems and recognize the importance of designing scientifically sound and ethical research to solve societal problems. Research scholar will become into a good academician and author of necessary papers. At end, research scholars will be awarded with Ph.D and they will be more suitable for higher education and industry needs.

Programme Specific Outcomes:

- ♦ Acquire in-depth knowledge in the basic concepts of biotechnology to strengthen background for academic, research, industrial and pharmaceutical applications.
- ♦ Recognise the need for the preparation and ability to carry out independent research in broadest context of biotechnological relevance.
- ♦ Analyse and interpret the data using modern tools in biotechnology and effectively communicate the results to the stakeholders