Year Branch	Course Code	Course Name	Course Objectives	Course Out Come's
I/IV MECH I Sem	ME-111	ENGINEERING GRAPHICS	PO 1: Projections of points and straight lines-1 PO 2: Projections of straight lines-II and planes. PO 3: Projections of solids and sections of solids PO 4: Isometric and Orthographic projections.	 Upon successful completion of this course, the student will be able to CO 1: Understand the importance of codes from BIS and ISO Standards in Engineering Drafting. CO 2: Construct graphically and understand the importance of basic mathematical curves in Engineering applications CO 3: Visualize and Demonstrate various geometrical structures (i.e. points, lines, planes and solids) through Orthographic Projections. CO 4: Prepare and interpret the orthographic and Isometric views of various solids. CO 5: Draw and develop the sectional views, surfaces of geometrical solids and projections of intersecting solids. CO 6: Confident in preparing 2D and 3D drawings using CAD
I/IV MECH I Sem	CE-111	ENGINEERING MECHANICS	 PO 1: Develop concept of force, reactions, principles of force and their application on engineering structures and machines PO 2: Introduce various kinds of statically determinate pin jointed structures and methods of analysing the trusses. PO 3: Understand the importance of geometric centre, cross sectional areas of plane lamina and moment of inertia PO 4: Understand the behavior of particles in motion subjected to system of forces. 	Upon successful completion of this course, the student will be able toCO1: Represent the force, moments for drawing free-body diagramsdiagramsandanalyze friction based systems in static condition.CO 2: understand the mechanics involved in pin jointed structures the trussesCO 3: To locate the centroid of an area and calculate the momentCO 4: Apply of conservation of momentum & energy principle for particlefor particleparticledynamicsandrigidbody kinetics

I/IV MECH II Sem	ME-121	Engineering Workshop	 PO 1: The workshop practice in first year common to all branches of engineering at degree level. PO 2: To gain a good basic working knowledge required for the production of various engineering products. PO 3: It is intended to import basic knowledge of hand tools and instruments their uses in different sections. PO 4: They include carpentry, fitting, plumbing, welding, electrical house wiring and foundry. 	 CO 1: Study and practice on various tools and instruments using in workshop carpentry, fitting, pluming, welding, house wiring and foundry. CO 2: The students will able to perform in carpentry, half lap joint, bridle Joint, mortise and tenon joint etc. CO 3: The students willable to perform square fit, half round fit and dove tail fit. CO 4: The students willable to perform in plumbing shop using of coupling, nipple, elbow, plug, tee, reducer, union, tap and etc CO 4: The students will able to perform the welding process to make butt joint, Lap Joint, and T-lap joint. CO 5: The students will able to perform electrical house wiring to prepare Parallel & Series, Two-way Switch and Tube Light. CO 6: The students will able to preparation of green
				sand mould using single piece and split pattern.
II/IV MECH I Sem	ME-21	Thermodynamics	 PO 1: To understand the basic concepts of thermodynamic laws and cycles. PO 2: To understand the first law of thermodynamics for open and closed systems and its applications. PO 3: To understand the second law of thermodynamics, gas laws and concepts of entropy principle. PO 4: To understand the concepts of pure substances, properties of steam, property diagrams and power plant cycles. PO 5: To study the properties of moist air, psychometric charts, air conditioning and thermodynamic analysis of gas mixtures. 	Course Outcomes: Upon Completion of this course the students are able to: CO 1: Explain the Basic Terminology of Thermodynamics like Systems, Ideal gases and Other vocabulary of thermodynamics. CO 2: Understand the SFEE and USFEE, application of first law of thermodynamics to open and closed systems. And solve the problems related to open and closed systems. CO 3: Understand the concept of second law of thermodynamics, entropy and exergy, anergy and solve the problems related to second law of thermodynamics.

				CO 4: Acquiring the knowledge of pure substances, properties of steam, properties diagrams and solve the problems related to power plant cycles.CO 7: Understand the behavior of gas mixtures, working of air conditioning system and calculating performance parameters using psychometric chart.
			CO 1: To understand the basic concepts of stress, strain and their relations based on linear elasticity	Upon successful completion of this course, the student will be able to PO 1: Apply the fundamental concepts of stress and strain in the analysis and design of axially loaded bars. Material behaviors
II/IV MECH I Sem	ME-212	Mechanics of solids	CO 3: To determine the bending stress distribution and shear stress distribution in beams	due to different types of loading will be discussed. PO 2: Evaluate shear forces and bending moments in beams Learn the concept of pure bending theory and determine the bending stresses &shear stresses in beams
	CO 4: To formulate the deflection and slope equations of beams, evaluate stresses and strains of circular members subjected to torsionPO 3: Study the concepts of Pure torsion applications, analyze deflections of differen under varying loading conditionsCO 5: To understand the importance of pressure vesselsPO 4: Derive the equations of circumferenti stresses in thin cylinders and Lame's equivalenceUpon successful completion of this course, th	PO 3: Study the concepts of Pure torsion theory and its applications, analyze deflections of different types of beams under varying loading conditions		
			CO 5: To understand the importance of pressure vessels	PO 4: Derive the equations of circumferential & longitudinal stresses in thin cylinders and Lame's equation for thick cylinders
			PO 1: Provide basic foundation on crystal structure, imperfections	Upon successful completion of this course, the student will be able to
II/IV MECH I Sem			in solids PO 2: To demonstrate the knowledge of structure property relationship	CO 1: Identify crystal structures for various materials and understand various failures in metals like fracture, creep and fatigue.
	ME-213	A-213 Material Science & Metallurgy	PO 3: To make students familiar with different types of phase diagrams	CO 2:Acquire knowledge to tailor material properties of ferrous and non-ferrous alloys
			PO 4: To understand types of heat treatment process	CO 3: Differentiate the properties and applications of ceramics, polymers and composites.
			PO 5: Gaining the knowledge on effect of alloying elements on steel and cast iron	CO 4: Design various heat treatments to produce specific microstructure and properties for steels using time- temperature-transformation and continuous cooling diagrams as needed.

				Upon successful completion of this course, the student will be able to	
			CO 1: To understand the fundamental science involved in various casting processes.	PO 1: To select appropriate design of gating systems, effective moulding technique, and metal working processes in order to create the products as efficiently as possible.	
			CO 2: To understand the principle of high energy rate forming processes	PO 2: Ability to control the process parameters in modern	
II/IV MECH I Sem	ME-214	Manufacturing Science	CO 3: To familiarize the load estimations in sheet metal operations.	eliminate them.	
			CO 4: To understand the basics of powder metallurgy process.	PO 3: To estimate the forces involved in the various sheet metal operations.	
			CO 5: To understand the basic concepts of various welding processes.	PO 4: To analyze problems on forging, rolling, drawing meet industrial needs.	
				PO 5: Able to select appropriate welding process to join various metals to meet industrial needs.	
			This Laboratory course will develop students" knowledge in/on	Upon successful completion of this course, the student will be able to	
			CO 1: Microstructures of metals and non-metals	 able to PO 1: Acquire experimentation skills in the field of material testing. PO 2: Identify different metals and alloys based on metallurrical phases observed in the micro structure. 	
II/IV MECH I	ME-215L	Material Science & Metallurgy Lab	CO 2: Testing of engineering materials.		
Sem	NIL 215L	Wetantingy East	CO 3: The hardness of materials by conducting the hardness tests	incurrence phases observed in the intero structure	
			CO 4: The stiffness and rigidity modulus by conducting	PO 3: Apply various testing methods for hardness tests PO 4: Estimate the stiffness and rigidity modulus by conducting compression test on spring	
			compression test on spring, torsion test on shaft.		
		CO 5: Mechanical properties of engineering materials			
			PO 1: To understand the science behind the preparation of sand	PO 5: Draw stress strain diagram Upon successful completion of this course, the student will be	
			mould, casting process.	able to	
II/IV MECH I Sem	ME-216L	Manufacturing Science Lab	PO 2: To learn about different welding processes like Gas and ARC welding. To know the forming process.	CO 1: Able to get the basic knowledge to make use of various tools in foundry and welding processes to produce the products.	
			PO 3: To understand the influence various properties on moulding sand.	CO 2: Ability to conduct various tests to identify the proper composition and properties of molding sands.	

II/IV MECH II Sem	ME-220	Thermal Engineering	 PO 4: To understand knowledge to make use of various tools, techniques of foundry. PO 5: To acquire the practical hands on experience welding in order to produce components PO 1: To understand the basic concepts of thermodynamic laws and cycles. PO 2: To understand the first law of thermodynamics for open and closed systems and its applications. PO 3: To understand the second law of thermodynamics, gas laws and concepts of entropy principle. PO 4: To understand the concepts of pure substances, properties of steam, property diagrams and power plant cycles. PO 5: To study the properties of moist air, psychometric charts, air conditioning and thermodynamic analysis of gas mixtures. 	 CO 3: Able to design the moulds of simple objects like flange, dumble, pulley etc. with the aid of foundry tools. CO 4: Ability to perform the welding process to make butt joint, Lap Joint, corner joint etc. with the help of appropriate parameters for improvement of weld quality Upon successful completion of this course, the student will be able to CO 1: Explain the Basic Terminology of Thermodynamics like Systems, Ideal gases and Other vocabulary of thermodynamics. CO 2: Understand the SFEE and USFEE, application of first law of thermodynamics to open and closed systems. And solve the problems related to open and closed systems. CO 3: Understand the concept of second law of thermodynamics, entropy and exergy, energy and solve the problems related to second law of thermodynamics. CO 4: Acquiring the knowledge of pure substances, properties of steam, properties diagrams and solve the problems related to power plant cycles. CO 5: Understand the behavior of gas mixtures, working of air conditioning system and calculating performance parameters using psychometric chart.
II/IV MECH II Sem	ME-220L	Thermal Engineering Lab-I	 PO: 1 Demonstrate the experiment to measure viscosity, flash and fire points of the given oils. PO: 2 Explain the actual vale timing and port timing diagrams for I.C engines. PO: 3 Evaluate the performance of the engines PO: 4 Estimate different ways of energy utilization in the engines 	Upon successful completion of this course, the student will be able to CO 1: To evaluate the properties of fuels and lubricants. CO 2: To know the actual Valve Timing and Port Timing Diagrams.

				CO 3: To understand the performance of SI and CI engines.
				CO: 4 To prepare Heat Balance Sheet for SI and CI engines.
II/IV MECH II Sem	ME-221	Machine Tools & Metrology	 PO1: Geometry of cutting tools, types of chips, metal cutting parameters PO2: lathe, shaper, planer and drilling machines PO3: milling & grinding machines, super finishing operations. PO4: limits, fits & tolerances, Design of GO and NO-GO gauges, angular measurements. PO5: Screw thread measurements, surface finish and and alignment testing, CMM- types and applications. 	 Upon successful completion of this course, the student will be able to CO1: Understand the geometry of cutting tools, mechanism of chip formation and parameters of metal cutting CO2: Categorize various machine tools and distinguish working principles, operations & applications of lathe, shaper & drilling machines CO3: distinguish working principles, operations & applications of milling & grinding machines and super finishing operations. CO4: design limit gauges using Taylor"s principle and understand the working principle of angular measurements. CO5: determine surface finish evaluation methods & effective diameter of screw threads and explain alignment test for lathe, CMM – types and applications.
II/IV MECH II Sem	ME-221L	Machine Tools & Metrology Lab	 PO 1: To learn the science involved in operation of lathe, shaper, planer and drilling machines PO 2 : To impart practical exposure for measuring various parameters like length, height, angle, displacement, flatness etc., by using various instruments like vernier calipers, micrometer, dial indicator, etc PO 3: To perceives the knowledge required for Screw thread measurements, surface finish and and alignment testings, CMM-types and applications. PO 4: To develop fundamental knowledge on limits, fits & tolerances, Design of GO and NO-GO gauges, angular measurements 	 Upon successful completion of this course, the student will be able to CO 1: Perform various operations on machine tools like lathe, milling machine, shaper machine, slotter machine etc. CO 2: Measure the various parameters like length, height, angle, displacement, flatness etc., by using various instruments like vernier calipers, micrometer, dial indicator, etc CO 3: The student will be able to measure and analyze the data of the threads, gear tooth profiles and surface roughness using appropriate instruments. CO 4: The students will be able to identify the sources of variability error and uncertainties

II/IV MECH II Sem	ME-222	Design Of Machine Elements – I	 PO 1: To understand the basics of mechanics of materials and design of a machine for static and fatigue strength, rigidity and wear criterions, usage of codes and standards. PO 2: To know the principles of ergonomic design. PO 3: To learn the principles to design shafts, keys, belt drives, joints and couplings 	 Upon successful completion of this course, the student will be able to CO 1: Analyse stress & strain induced in a machine element &decide the behaviour based on failure criterion CO 2: Analyse and evaluate fatigue and impact loads applied on mechanical components and realize the importance of stress concentration effects CO 3: Design and evaluate various joining techniques (permanent and non permanent) under different loading conditions CO 4: Design and analyze effects of various loading conditions on machine elements like keys, cotters, couplings, shafts, drive systems like belts pulleys
II/IV MECH II Sem	ME-223	Instrumentation and control systems	 PO 1: To provide the knowledge of instrumentation systems and basic characteristics of a instrument, identifying the errors occur in an instrument. PO 2: To understand the concept of transducers, classification and their characteristics. PO 3: To understand the working principle of various instruments used for the measurement of strain, pressure, temperature, flow, speed and vibrations. PO 4: To understand the fundamentals of control systems and their classifications 	 Upon successful completion of this course, the student will be able to CO 1: To identify various elements of instrumentation system and their purpose in typical instruments, to identify various errors that would occur in instruments. CO 2: Explore various types of transducers and their characteristics. CO 3: Explain the measurement of the physical phenomenon. (Measurement of strain, pressure, temperature, flow, speed and vibrations.) CO 4: Understand and apply measurement principles in industrial requirements. CO 5: Understand the fundamentals of control system and the difference between the open and closed loop control systems.
II/IV MECH II Sem	ME-224	Kinematics of Machinery	PO 1: To understand the basic elements of machinery and their motion characteristicsPO 2: To know the kinematic properties like velocity & acceleration of mechanisms and machines	Upon successful completion of this course, the student will be able to CO 1: Understand the principles of Kinematic pairs, chains with their classification, DOF, Inversions, equivalent planar

				mechanisms
			PO 3: To understand basics of lower pair mechanism.	CO 2: Determine the position, velocity and acceleration profiles of various planar mechanisms using graphical and analytical methods.
			PO 4: To know classification and applications of cams.	CO 3: To study the various straight line mechanism & steering gear mechanisms.
			trains	CO 4: Design cams and followers for specified motion profiles
				CO 5: Evaluate gear tooth geometry and select appropriate gears and gear trains for different applications
			PO 1: To provide basic understanding and drawing practice of various joint, simple mechanical parts Selection of Views, additional views for the following machine elements and parts	Upon successful completion of this course, the student will be able to
(LMachine DrawingNumber of the following inactified elements and partsCO 1: Draw the assembled views for the part dr following using conventions and easy drawing pri bolts, set screws.Nachine DrawingPO 2: Popular forms of Screw threads, bolts, nuts, stud bolts, tap bolts, set screws.CO 1: Draw the assembled views for the part dr following using conventions and easy drawing pri CO 2: Engine parts – stuffing boxes, cross head Petrol Engine connecting rod, piston assembly.PO 3: Keys, cottered joints and knuckle joint.CO 3: Other machine parts - Screws jacks, M 	CO 1: Draw the assembled views for the part drawings of the following using conventions and easy drawing proportions.	
II/IV MECH II Sem	ME-225L		PO 3: Keys, cottered joints and knuckle joint.	CO 2: Engine parts – stuffing boxes, cross heads, Eccentrics, Petrol Engine connecting rod, piston assembly.
			PO 4: Riveted joints for plates	CO 3: Other machine parts - Screws jacks, Machine Vices Plummer block, Tailstock.
			PO 5: Shaft coupling, spigot and socket pipe joint.	CO 4: Valves, Steam stop valve, spring loaded safety valve, feed check valve and air cock.
			root step bearings.	
			PO 1: To understand the properties of fluids and types of fluids.	Upon successful completion of this course, the student will be able to
		Fluid Mechanics	PO 2: To verify the Bernoulli's theorem and its applications.	CO 1: Define the properties of fluids and classify the fluids.
III/IV MECH I Sem	PC3101ME	and Hydraulic Machines	flow through pipes. PO 4: To introduce the concepts of the working and design aspects	CO 1: Apply conservation laws to fluid flow problems in engineering applications and examine the stability of floating bodies.
			of hydraulic machines like turbines and pumps and their applications.	CO 1: Apply Euler's Equation of motion and Bernoulli's equation for flow measuring devices and hydraulic machines.
			FO 5: TO determine the basic principles and characteristic curves	

				CO 1: Illustrate the working of Hydraulic machines.
			of turbines and pumps	CO 1: Analyze the performance of various types of Hydraulic pumps and turbines
			PO 1: To find static and dynamic forces on planar mechanisms.	Upon successful completion of this course, the student will be able to:
			PO 2: To investigate the effect of gyroscopic couple in rotating parts.	CO 1: Compare and contrast different methods of static and dynamic analysis of various mechanisms
III/IV MECH	DC2102ME	Dynamics of	PO 3: To know the causes and effects of unbalanced forces in machine members.	CO 2: Evaluate Gyroscopic effects on Naval ships, Aeroplanes and Automobile.
I Sem	FC3102WIE	Machines	PO 5: To determine natural frequencies of undamped, damped and forced vibrating systems of one, two and multi degree freedom	CO 3: Analyze balancing problems in rotating and reciprocating machinery.
			systems	CO 4: To analyze the working of various centrifugal governors in various applications
				CO 5: Determine natural frequencies of longitudinal, transverse& torsional vibrations.
			PO 1: Importance of materials & criteria of failure of general mechanical components like springs, gears, brakes, bearings used in industry	Upon successful completion of this course, the student will be able to CO 1: Illustrate various mechanical components under different loading conditions & constraints.
III/IV MECH	PC3103ME	Machine Design	PO 2: Importance of the stresses developed under different loading conditions	CO 2: Analyse various mechanical components under simple and combined loads.
I Sem		in and in a sorger	PO 3: Learn to apply design procedures for mechanical components like springs, gears, bearings	CO 3: Determine (material, dimensions, shape, number) mechanical components subjected to various types of loads, constraints & failure criterions
			theories	CO 4: Design mechanical components for specific applications
			PO 5: Learn to design components for new applications	in industry
			PO 1: To understand the requirement of production planning and control for manufacturing organizations.	Upon successful completion of this course, the student will be able to
III/IV MECH I Sem	PC3104ME	Production Planning and Control	PO 2 : To develop skills to estimate and use appropriate planning and control techniques.	CO 1: Understand the role Production Planning and control activities in Manufacturing and Services.
			PO 3: Ability to evaluate, analyze and make decisions for short term as well as long term organizational growth,	CO 2: Understand and perform various Forecasting techniques and problems

			PO 4: To develop skills to perform production planning and control operations for any manufacturing organization.	 CO 3: Understand and perform various Inventory Management techniques and apply in real manufacturing scenario CO 4: Demonstrate various Scheduling procedures CO 5: Evaluate and perform various line balancing concepts CO 6: Understand and analyse Dispatching procedures
III/IV MECH I Sem	PC3105ME	Design of Thermal Systems	 PO 1: To develop the fundamental principle of solar radiation and it's measuring devises. PO 2: To understand the concept of solar cell system and implications of solar cell system for best performance. PO 3: To understand the concept of concentrated sunlight and solar power (CSP), solar cells in concentrated sunlight and design of photovoltaic systems. PO 4: To formulate solar thermal systems and also develop solar hybrid systems for different applications. PO 5: To formulate governing equations performance testing of solar collectors and combination of solar thermal and solar cell systems. 	 Upon successful completion of this course, the student will be able to: CO 1: Illustrate solar radiation and its physical function of the measuring devices. CO 2: Compare and contract technologies of solar cell fabrication methods. CO 3: Calculate the required size of solar cell systems for maximum output in peak hours. CO 4: Illustrate the solar thermal system for different applications. CO 5: Evaluate the performance of combined solar thermal and solar cell systems.
III/IV MECH I Sem	PC3106ME	Non Conventional Energy Sources	 PO 1: Non-conventional energy sources and solar energy technologies PO 2: Wind, geothermal and hydrogen energy technologies PO 3: Fuel cell, ocean thermal energy and tidal energy PO 4: Biomass& biogas energy production, magneto hydro dynamic, thermoelectric & thermo-ionic power generation technologies 	 Upon successful completion of this course, the student will be able to CO 1: Classify non-conventional energy sources and solar energy technologies CO 2: Discuss the working mechanism of wind, geothermal and hydrogen energy CO 3: Explain the methods to extract energy from fuel cell, ocean thermal energy and tidal energy CO 4: Describe the working principle of biogas generation, magneto hydro dynamic, thermo-electric and thermo-ionic technologies

III/IV MECH I Sem	PC3107ME	Power Plant Engineering	 PO 1: Explain the working of nuclear power plants and waste disposal techniques PO 2: Discuss the working principles of steam and combined cycle power plants PO 3: Describe hydrology and hydroelectric power plants PO 4: Evaluate the power plant economic parameters 	 Upon successful completion of this course, the student will be able to CO 1: Understand the types of energy resources available CO 2: Understand and Classify the components of nuclear power station CO 3: Understand the working of steam power plants CO 4: Understand the construction and layout of hydel power plants CO 5: Analyse the importance of waste disposal techniques CO 6: Understand the types of tariffs and power plant economics
III/IV MECH I Sem	PC3109ME	Fluid Mechanics And Hydraulic Machinery Laboratory	 PO 1: To understand the properties of fluids and types of fluids. PO 2: To verify the Bernoulli's theorem and its applications. PO 3: To understand the concepts of fluid flow measurement and flow through pipes. PO 3: To introduce the concepts of the working and design aspects of hydraulic machines like turbines and pumps and their applications. PO 4: To determine the basic principles and characteristic curves of turbines and pumps. 	 Upon successful completion of this course, the student will be able to CO 1: Define the properties of fluids and classify the fluids. CO 2: Apply conservation laws to fluid flow problems in engineering applications and examine the stability of floating bodies. CO 3: Apply Euler's Equation of motion and Bernoulli's equation for flow measuring devices and hydraulic machines. CO 4: Illustrate the working of Hydraulic machines. CO 5: Analyze the performance of various types of Hydraulic pumps and turbines.
III/IV MECH I Sem	PC3110ME	Dynamics of Machines Lab	 PO 1: Find out natural frequencies and other important parameters for different vibrating systems using Universal vibration apparatus. PO 2: To study the effect of gyroscopic couple on rotating disc PO 3: To study the working of various governors 	Upon successful completion of this course, the student will be able toCO 1: Importance of vibrations in mechanical systems & analyse Single and multi-degree freedom vibrating systems.CO 2: Evaluate the reaction torque due to gyroscopic effects in

			PO 4: To know the effects of rotary unbalancing and methods of reduction PO 5: To understand the whirling phenomenon in shafts	 systems. CO 3: Investigate the effect of various governors on speed control of mechanisms. CO 4: Inspect methods to reduce effects of static and dynamic unbalance due to rotating systems. CO 5: Determine the critical speeds of the whirling of different diameter shafts.
III/IV MECH II Sem	PE3201ME	Metal Cutting Science and Unconventional Machining	 PO 1: To emphasize the various unconventional methods of machining and forming techniques. PO 2: To understand the principles, advantages and applications of unconventional machining and forming processes. PO 3: To know the various process parameters and their effect on machining and forming. To teach the modeling technique for machining processes PO 4: To understand the concepts involved in unconventional machining processes of USM, AJM, WJM,ECM, EDM, EBM, LBM and PAM and their applications. 	 Upon successful completion of this course, the student will be able to CO 1: Tool geometry of cutting tools, single point tool,twist drill, milling cutter and broach. study of chip formation. CO 2: Measurement of cutting forces using Dynamometers and temperature measuring methods CO 3: Understand sources of heat and heat distribution, different causes of tool wear and tool life. CO 4: Analyze the types of cutting fluids, properties, functions, and selection. CO 5: Know principle, applications, advantages and disadvantages of unconventional machining processes of USM, AJM, WJM,ECM, EDM, EBM, LBM and PAM.
III/IV MECH II Sem	PE3202ME	Heat Transfer	PO 1: To introduce the basic modes of heat transfer with governing laws and to explore the implications of these principles for system behavior.	Upon successful completion of this course, the student will be able to

			PO 2: To study the heat transfer through fins and lumped heat analysis develop the problem solving skill use of grover and	CO 1: Illustrate the basic modes of heat transfer with its associated laws in simple geometries
			heisler charts.	
			PO 3: To introduce the mechanism of convection, use of dimensional analysis in free and forced convection, boundary	CO 2: Solve the problems of steady state and transient heat conduction with simple and multilayer geometries, heat transfer through fin.
			geometries using empirical formulae.	CO 3: Analyze heat transfer coefficients for free and forced convection, considering boundary layers. And velocity and thermal boundary layer concents
			concepts of black body, emissivity black body radiation exchange,	CO 4: Develop relationships for radiation exchange between
			PO 5: To study the performance of heat exchanger by LMTD and	(Opaque, Diffuse, Gray) Surfaces in an enclosure, Blackbody radiation exchange and radiation shields.
			NTU methods. Study the concept of boiling & condensation.	CO 5: Analyse heat exchanger performance by using the
				methods of Log Mean Temperature Difference (LMTD), effectiveness-NTU, and also focus on the knowledge of boiling and condensation.
			PO 1: Evaluate the performance of air & vapor compression refrigeration system and explain the desirable properties of	Upon successful completion of this course, the student will be able to
			refrigerants	CO 1: Understand the basic concepts of refrigeration and analyse Vapour compression refrigeration system.
			PO 2: Explain the working principle of vapor absorption, non- conventional refrigeration systems	CO 2: Understand and Classify the components of refrigeration system.
III/IV MECH	PE32023ME	Refrigeration and Air Conditioning	PO 3: Estimate the cooling load capacity for a given application	CO 3: Evaluate the performance of Vapour absorption and Air-refrigeration system.
II Sem			PO 4: State the design considerations in refrigeration & air- conditioning applications	CO 4: Estimate air-conditioning load to a given space required for human comfort.
				CO 5: Analyse the importance of different accessories required for air conditioning equipment.
				CO 6: Demonstrate different Air-condition and refrigeration systems.
III/IV MECH	PE3204ME	Finite Element	PO 1: To understand the theory and application of the finite element method for analyzing structural systems.	Upon successful completion of this course, the student will be able to:
II Sem	1 2020 1012	Analysis	PO 2: To learn Approximation theory for a variety of elements such as truss, beam and frame	CO 1: Illustrate the concept of Finite Element Method and realize its limitations.

			PO 3: To learn formulations for two-dimensional stress analysis problems & Axi-symmetric problems.	CO 2: Construct shape functions & stiffness matrix for truss, beam and frame elements.
			PO 4: To understand modelling and analysis of 2D isoperimetric elements& steady state heat transfer problems.	CO 3: Modelling the 2D stress analysis problems to obtain element stresses, strains, displacements and forces
			PO 5: To understand modelling of dynamic analysis and time dependent field problems	CO 4: Solve 1D and 2D steady state heat transfer problems such as fins & thin plates, and 2D isoperimetric elements with CST's.
				CO 5: Analyze Eigen value and Eigen vector problems and 3D stress analysis problems for finite element modelling
				Upon successful completion of this course, the student will be able to
			PO 1: Learn the concepts of fatigue design and testing.	CO 1: Enumerate the design philosophy and recognize
TTT / TT /	PE3205ME	Fatigue, Creep and Fracture	PO 2: Understand the factors affecting fatigue strength.	formulate fatigue design.
MECH II Sem			PO 3: Conceptualize the theory of ductile and brittle fracture	CO 2: Illustrate the factors affecting fatigue and methods to improve fatigue strength.
~			PO 4: Understand the modes of fracture and its measurement.	CO 3: Evaluate ductile and brittle fracture.
			PO 5: Learn the mechanism of creep and its importance in design.	CO 4: Predict the stress field at the crack tip.
				CO 5: Calculate and measure creep deformation.
				Upon successful completion of this course, the student will be able to:
			PO 1: To understand the concept of analysis of stresses	CO 1: Illustrate the basic concepts in continuum mechanics of solids, and analyse the stresses in Cartesian coordinates to
		Theory of Elasticity	PO 2: To understand the concept of analysis of strains.	obtain the equations of equilibrium
III/IV MECH II Sem	PE3206ME		PO 3: To distinguish plane stress and plane strain analysis.	CO 2: Implementation of compatibility equations by analysing the strains in terms of displacements & derive the stress-strain
			PO 4: To understand & solve the problems on bending of beams&	relations for linearly elastic solids
			PO 5. Learn the concent to calue minute this multi-	CO 3: Derivation of constitutive relations of plane stress and strain.
			PO 5: Learn the concept to solve axisymmetric problems	CO 4. Freehade the Tarrian of thefe 9 and (1 1'
				stresses in straight&curved beams and study the bending phenomenon in plates.

				CO 5: Analyza avisymmetria problems such as avlinders and
				rotating discs and stability of columns.
				Upon successful completion of this course, the student will be able to
III/IV MECH II Sem	PE3210ME	Metal Cutting Science Lab	 PO 1: The main objective of this course is to emphasize the importance of metal cutting science lab everyday life. PO 2: As well as to understand the fundamental science involved in machining process and tools used. PO 3: The course is designed to help the students in perceiving the knowledge. PO 4: The process like turning, shaping, grinding and inspection. 	 CO 1: The student will be able to get the basic knowledge to use of various machine tools and to produce the products. CO 2: The student will be able to design the single point cutting tool using grinding machine with respect to tool geometry. CO 3: Upon successful completion of this course, the student will be able to study of chip formatoon, types of chips and they get chip mechanism, use of different metals. CO 4: Upon successful completion of this course, the student will be able to determine the shear angle in turning process. CO 5: Upon successful completion of this course, the student will be able to determine the shear angle in shaping process.
			PO 1: To understand the concept of heat transfer modes (conduction convection and radiation) to practical applications	Upon successful completion of this course, the student will be able to
				CO 1: Determine the thermal conductivity of insulating powder.
			PO 2: To determine the heat transfer coefficients under free and forced convection heat transfer.	CO 2: Determine convective heat transfer coefficient for free and forced convection.
			PO 3: To determine the thermal conductivity of various materials.	CO 3: Perform the steady state heat conduction experiments to
III/IV MECH	PC-3211MF	Thermal Engineering Lab-II	PO 4: To determine the emissivity of a test plate and Stefan Boltzmann constant	estimate thermal conductivity of different materials.
II Sem	PC-3211ME		PO 5: Determine the performance of various refrigeration systems.	CO 4: Determine the thermal conductivity of a metal rod and overall heat transfer coefficient of composite slabs.
				CO 5: Obtain the variation of temperature along the length of the pin fin under free and forced convection.
				CO 6: Determine surface emissivity of a test plate and Stefan-Boltzmann's constant.
				CO 7: Compare the COP of various refrigeration systems.

IV/IV MECH I Sem	PC4101ME	CAD/CAM	 PO 1: Provide basic foundation in computer aided design / manufacturing Understand the fundamentals used to create and manipulate geometric models PO 2: Get acquainted with the basic CAD software designed for geometric modeling PO 3: Learn working principles of NC machines CNC control and part programming PO 4: Understand concept of Group Technology, FMS and CIM PO 5: To help the student in understanding advanced manufacturing concepts like Group. PO 6: Technology, flexible manufacturing systems, Computer aided Process Planning; Computer aided quality control, Artificial Intelligence etc. Course 	 Upon successful completion of this course, the student will be able to CO 1: Describe basic structure of CAD workstation, Memory types, input/output devices and display devices and computer graphics CO 2: Apply of CAD computational analysis tools to engineering design and create a complete CAD documentation for an engineering design. CO 3: Acquire the knowledge of geometric modeling and Execute the steps required in CAD software for developing 2D and 3D models and perform transformations CO 4: Model complex shapes including freeform curves and surfaces CO 5: Explain the basic concepts of CNC programming and machining CO 6: Implement CNC programs for milling and turning machining operations CO 7: Explain fundamental and advanced features of CNC machines CO 8: Illustrate Group Technology, CAQC and CIM concepts
IV/IV MECH I Sem	PC4102ME	Industrial Automation	 PO 1: To introduce the importance of automation techniques manufacturing and process industries. PO 2: To impart the role of PLC in industry automation. PO 3: To expose to various control techniques employed in process automation. PO 4: To develop automation system for manufacturing and 	Upon successful completion of this course, the student will be able toCO 1: Understand the basics of PLC programming.Understand the different parameters of PLC.CO 2: Design different process control applications through ladder logic.

				CO 2: Analyza & avalain different functions of DI C
			process industries.	CO 3: Analyze& explain different functions of FLC.CO 4: Build and experiment with PLC based SCADA systems for various industrial applications.CO 5: Implement HMI, distributed control system and Industry standard 4.0
IV/IV MECH I Sem	PC4103ME	Advanced Material Science	 PO 1: To Understand the behaviour of materials at nano scale PO 2: To make students familiar with different types approaches of nano fabrication PO 3: To Identify advanced techniques available for characterization of materials PO 4: Select constituent materials for producing a given composite PO 5: Identify suitable processes to develop fibre reinforced composite materials. 	 Upon successful completion of this course, the student will be able to CO 1: Dist Distinguish Nanomaterials and select fabrication methods of Nano Materials CO 2: Create and characterize nanostructures CO 3: Describe the size effect on optical, electrical, mechanical, magnetic and thermal properties CO 4: Select matrices for composite materials in different applications. CO 5: Describe key processing methods for fabricating composites.
IV/IV MECH I Sem	PC4104ME	Computational Fluid Dynamics	 PO1: Basics, solution procedure of CFD and Navier-Stokes Equations PO2: Turbulence and classification of partial differential equations PO 3: Nature of parabolic and elliptic partial differential equations PO 4: Nature of hyperbolic partial differential equations, stability analysis and FVM 	 Upon successful completion of this course, the student will be able to CO1: design a simple geometry using CFD procedure and derive the Navier-Stokes Equations CO 2: derive the Navier-Stokes equations in conservative forms, explain turbulence models and classify partial differential equations CO 3: solve parabolic and elliptic partial differential equations CO 4: evaluate hyperbolic partial differential equations, understand stability analysis and FVM
MECH I Sem	PC4105ME	Computational Fluid Dynamics	complex engineering problem by mathematical modeling single and multi-disciplinary systems.	able to

			 PO 2: Understanding the industrial need of integrating traditional boundaries of mechanical, electronics, mechanical and control systems engineering with an concurrent approach. PO 3: Apply the engineering knowledge to conduct investigations of complex engineering problem related to instrumentation, control, automation, robotics and provide solutions. 	 CO 1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. CO 2: Introduces the areas of technology involving sensors and measurement systems, drive and actuation systems, analysis of the behavior of systems, control systems and microprocessor systems. CO 4: Enhance intelligent practical knowledge by replacing mechanical components with an electronics solution. CO 4: Demonstrate knowledge and understanding in enhancing existing mechanical design with intelligent control by Implementing electronics control in a mechanical system. CO 5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of their limitations. CO 6: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
IV/IV MECH I Sem	PE4106 ME	Tool Design	 PO 1: To understand the basic knowledge of select appropriate materials for tooling applications PO 2: To grasp the Design, develop, and evaluate cutting tools and work holders for a manufactured product PO 3: To comprehend the basic knowledge of press tools for sheet metal working. 	 Upon successful completion of this course, the student will be able to CO 1: Understand ASA and ORS systems of tool geometry . Design a single point or multi point cutting tool to machine a required job. CO 2: Design a die and punch for blanking, piercing, drawing and bending operations. CO 3: Discriminate the knowledge of Jigs and Fixtures design CO 4: Apply the concepts and design of GO and NO GO gauge.
IV/IV MECH I Sem	PE4107ME	Additive Manufacturing	PO 1: To understand the fundamental concepts of Additive Manufacturing (AM), its advantages, limitations and classifications.	Upon successful completion of this course, the student will be able to CO 1: Interpret the features of Additive Manufacturing (AM)

				and compare it with conventional CNC Technology.
			PO 2: To know the working principle, advantages, disadvantages and applications of Vat Photo Polymerization, Material Jetting, Binder Jetting, Material Extrusion powder bed 3fusion AM Technologies.	CO 2: Illustrate the working principle, advantages, limitations and applications of various Additive Manufacturing Technologies.
			PO 3: To understand the basic concept of powder bed & sheet lamination AM system	CO 3: Interpret various types of errors in STL file and other data formats used in AM and identify the role of Topology optimization in AM.
			PO 4: To know the various types of STL file errors and other data formats & understand features of various AM software and the concept of Topology optimization in AM.	CO 4: Analyze different types of software's used in 3D Printing Technology.
			PO 5: To understand the diversified applications of AM.	CO 5: Apply the knowledge of various AM technologies for developing innovative applications.
				Upon successful completion of this course, the student will be able to
			PO 1: To understand the basic concepts of design principles involved in manufacturing and raw materials used.	CO 1: To evaluate the theory behind the design principles involved in manufacturability.
			PO 2: To understand the concept of sheet metal design.	CO 2: To identify the effective and economical use of raw- materials.
MECH I Sem	PE4108ME	Design for Manufacturing	PO 3: To understand the concepts of precision grinding and surface finishing operations.	CO 3: To design various metallic components like Metal extrusion, drilled parts, milled part, planned shaped and slotted
			PO 4: To understand the basic concepts in design of permanent joining.	parts.
			PO 5: To understand the basic concepts in design of screw and bolt connections.	CO 4: To understand various permanent metallic designs like resistance, arc welding, soldering and brazed parts.
				CO 5: To design screw threaded contoured and internal ground parts.
IV/IV			PO 1: To introduce the fundamental knowledge fuel cell working principle and their utilizations.	Upon successful completion of this course, the student will be able to
MECH I Sem	PE4109ME	Fuel cell Technology	PO 2: To learn performance analysis of fuel cell through thermodynamics and electrochemistry.	CO 1: Describe the fundamental concept of fuel cell system and their relative merits and demerits and also compare with other systems
			PO 3: To understand the design concept of the fuel cell subsystems	CO 2: Understand the various types of fuel cells working

				mechanisms.
				CO 3: Execute appropriate fuel cell technology for a given application.
				CO 4: Evaluate the performance of fuel cells under different operating conditions and also know the fuel cell heat management.
				CO 5: Develop enough skills to design and require subsystems of the fuel cell system.
			PO 1: To study about the linear programming and non-linear	Upon successful completion of this course, the student will be able to
	OE4111EC	Optimization Techniques	programming concepts and their applications	CO 1: Analyze the real life systems with limited constraints and evaluate Single variable and Multivariable Optimization with Equality Constraints and Inequality Constraints
IV/IV MECH			optimization techniques and their applications.	CO 2: Define, formulate and Construct the L.P. Models to solve the problems with variables.
I Sem			PO 3: To understand the concepts and implementation of Genetic Algorithms to get the optimum solutions	CO 3: Understand the concepts of various direct and indirect random search methods.
			PO 4: To study the concepts of Meta-heuristics Optimization techniques	CO 4: Selecting variables and cost functions to execute binary genetic algorithm.
				CO 5: Evaluate the concept of meta-heuristic optimizations and its applications.
			PO 1: To become familiar with Full-Scale CAD Software systems designed for geometric modelling of engineering components.	Upon successful completion of this course, the student will be able to
			PO 2: Gaining knowledge of Analysis of mechanical components	CO 1: Apply CAD software for the geometric modelling of components
IV/IV Mech	PC4113ME	Product Design by	under static conditions using Finite Element Techniques.	CO 2: Analyse mechanical components by using Finite Element
I Sem		CAD Lab	PO 3: Becoming familiar with CNC machine tools, Its features	techniques
			miscellaneous and preparatory functions (M & G codes).	CO 3: Apply M & G codes in part programming used for CNC machine tools.
			PO 4: Getting exposed to the manufacturing process through flexible manufacturing Systems.	CO 4: Demonstrate flexible manufacturing system.

IV/IV MECH II Sem	PE4201 ME	Industry 4.0	 PO 1: Industry 4.0 components such as: automation, data exchanges, cloud, cyber-physical systems, mobile, robots, Big Data, deep machine learning, IoT, distributed systems and agile methodology. PO 2: Convergence between consumer and industrial applications, evolution of connectivity technologies and data processing. PO 3: Study how technology applications in Industry 4.0 will change industrial production PO 4: Study how Industry 4.0 contributes to competitive advantages from a management perspective PO 5: Strategize how businesses in different industries can benefit from Industry 4.0, in line with their needs and opportunities PO 6: Understand human oriented aspects of the IoT trend (quantified self) and data security issues and IT security principles, reliability and stability, and maintaining the integrity of the production process 	 Upon successful completion of this course, the student will be able to CO 1: Comprehend Business model innovation through Industry 4.0 CO 2: Comprehend IoT, cyber-physical systems, cloud computing and big data, smart factories and their role in Industry 4.0 CO 3: Understand drivers and enablers of Industry 4.0, including policy support CO 4: Understand the nature of the fourth industrial revolution and theoretical concepts CO 5: Understand the opportunities, and challenges brought through Industry 4.0
IV/IV MECH II Sem	PE4202 ME	Non Destructive Testing	 PO 1: Introduce basic concepts of non-destructive testing. PO 2: Familiarize with characteristicsof ultrasonic test, transducers, rejection and effectiveness. PO 3: Describe concept of liquid Penetrant, and magnetic particle tests, its applications and limitations. PO 4: Explain the principles of eddy current tests Understand the radiography tests with special emphasis on safety measures 	Upon successful completion of this course, the student will be able to CO 1: Able to understand the basic principles ,techniques and equipment of NDT methods. CO 2: Able to analyse and interpret the results from NDT TESTS CO 3: Able to apply the codes, standards and specifications used in NDT

				industrial products
				CO 5: Able to know the developments and future trends in NDT
IV/IV MECH II Sem	PE4203 ME	Total Quality Management	 PO 1: Total quality management (TQM) & TQM philosophies PO 2: Planning and quality management systems PO 3: TQM principles and customer satisfaction PO4: Statistical process control, tools and techniques of quality management 	 Upon successful completion of this course, the student will be able to CO 1: differentiate between traditional approach and TQM; assess & implement TQM philosophies CO 2: Analyze quality statements; implement quality management systems CO 3: Appraise the importance of TQM leadership, management commitment, teamwork and customer satisfaction CO 4: Select statistical process control charts, tools and techniques to enhance the quality of processes or products
IV/IV MECH II Sem	PE4204 ME	Tribology	 PO 1: To understand the various fluid flow parameters and concept of hydrostatic lubrication and its applications PO 2: To provide the basic knowledge in hydro dynamic theory of lubrication PO 3: To understand the various losses in design of journal bearings PO 4: To classify air lubricated journal bearings and study its advantages, disadvantages and applications PO 5: To know the different types of bearing oil pads & bearing materials 	 Upon successful completion of this course, the student will be able to CO 1: Study various parameters such as viscosity variation with respect to temperature, viscosity index and apply hydrostatic lubrication concept to different types of bearings CO 2: Describe various theories of lubrication and analyse journal bearings for hydrodynamic theory of lubrication CO 3: Analyse friction and power losses in designing of journal bearings CO 4: Analyse the compressibility effect on various air lubricated journal bearings and CO 5: Illustrate the types of bearing oil pads & types of bearing materials
IV/IV MECH II Sem	PE4205 ME	Automobile Engineering	PO 1: Summarize the history & basic principle of an automobile.PO 2: Compare types of Drive trains and Transmission Systems.PO 3: Study types of Steering, Axle, Wheels and Tyres.	Upon successful completion of this course, the student will be able to CO 1: Identify principal parts of an automobile and their layout.

				CO 1: Illustrate the working principles of Drive train and
				CO 1: Enumerate the working principles of Steering, Axle,
			PO 4: Examine various types of Suspension and braking systems.	Wheels and Tyres.
			PO 5: Understand alternative energy sources for automobiles.	CO 1: Examine the functioning of Suspension and braking systems.
				CO 1: Analyse of alternative Energy Sources for Automobile applications and latest automobiles.
				Upon successful completion of this course, the student will be able to
IV/IV MECH II Sem	PE4207 ME	Industrial Robotics		CO 1: Able to demonstrate knowledge of the relationship between mechanical structures of industrial robots and their operational workspace characteristics and have an
			PO 1: To familiarize the student with the anatomy of robot and their applications.	understanding of the functionality and limitations of robot actuators and sensors.
			PO 2: To provide knowledge about various kinds of end effectors usage.	CO 2: Able to demonstrate an ability to apply spatial transformation to obtain
			PO 3: To equip the students with information about various sensors used in industrial robots.	Forward/Inverse kinematics equation of robot manipulators using analytical/numerical/simulation tools.
			PO 4: To make the student understand the importance of spatial transformation of robots using forward and inverse kinematics.	CO 3: Able to apply knowledge and choose the best & economically suitable sensors/end effectors required for specific applications.
			PO 5: To specify and provide the knowledge of techniques involved in robot vision in industry.	CO 4: Able to understand the importance of robot vision and apply the learnt techniques to get the required information from input images
			PO 6: To equip students with latest robot languages implemented in industrial manipulators.	CO 5: Able to design and develop a industrial robot for a given purpose economically.
				CO 6: Appreciate the current state and potential for robotics in new application areas.